scholarly journals Genetic Algorithm for Effective Optimization of Delay Performance in Wireless Sensor Networks

2018 ◽  
Vol 26 (10) ◽  
pp. 281-308
Author(s):  
Saif Khalid Musluh ◽  
Alaa Abid Muslam ◽  
Raid Abd Alreda Shekan

Wireless sensor networks (WSNs) play an important role in many real-world applications like surveillance. Wireless networks are also used to have data transfer. In such cases, there are problems with  resourcece-constraintnednetworks. The problems include a delay in communication and reduction in Quality of Service (QoS). Topology control can solve this problem to some extent. However, the delay performance and QoS need to be improved further to support intended operations in wireless networks. When relay node concept is considered, it is possible to optimize performance in such networks. In this paper, we proposed a Genetic Algorithm (GA) based relay configuration for optimizing delay performance in WSN. Relay nodes compute optimal positions using the proposed algorithm so as to improve QoS and reduce delay as much as possible. We implemented the algorithm using NS2 simulations. The results revealed that the proposed approach is able to improve QoS, reduce delay besides improving network performance in terms of throughput, network capacity, and energy efficiency.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aaqil Somauroo ◽  
Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.


Author(s):  
Germán A. Montoya ◽  
Yezid Donoso

Communication disruptions caused by mobility in wireless sensor networks introduce undesired delays which affect the network performance in delay sensitive applications in MWSN. In order to study the negative effects caused by mobility, we propose two mathematical models to find the minimum cost path between a source node and a destination node considering the nodes position changes across time. Our mathematical models consider the usage of buffers in the nodes to represent the fact of storing a message if there is not an appropriate forwarding node for transmitting it. In order to contrast our mathematical models results we have designed two kinds of algorithms: the first one takes advantage of the closest neighbours to the destination node in order to reach it as fast as possible from the source node. The second one simply reaches the destination node if a neighbour node is precisely the destination node. Finally, we compare the delay performance of these algorithms against our mathematical models to show how efficient they are for reaching a destination node. This paper is an extension of [10].a The mathematical model proposed in [10] is improved by adding two new binary variables with the aim of make it more readable and compact mathematically. This means a post-processing algorithm is added only for evaluating if a solution is at the first network state.


2018 ◽  
Vol 15 (2) ◽  
pp. 403-408
Author(s):  
K. Stella ◽  
E. N. Ganesh

Wireless Sensor Networks are used in various applications such as target detection, military, environmental monitoring, disaster relief operations, health care systems, etc. Due to restriction of energy resources in wireless sensor networks, increasing the security and network life time while maintaining the network performance and fairness is challenging. We propose Distributed energy efficient Zonal relay node based Secure Routing Protocol (DEZMSR) to increase security and network life time while maintaining network performance and fairness. Sensor nodes are randomly deployed in hostile environment and hence they are captured by attackers. In the proposed protocol, Zonal relay node is selected based on zone radius and it is protected by using Symmetric Key encryption algorithm. The transmission of data from source node to sink node follows multiple path via zonal relay node. So it will increase the network life time, security and reduce the routing overhead.


2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668239 ◽  
Author(s):  
Ning Wang ◽  
Yingbin Fu ◽  
Jiao Zhao ◽  
Liwei Chen

This article analyzes the node importance in linear wireless sensor networks, which can be used to identify the key states of nodes that affect the wireless sensor network performance most. First, the sensor energy can be divided into energy of sensing event, energy of transmitting packets, and energy of receiving packets. The node residual energy of after data flow transmission in linear wireless sensor networks from source nodes and relay nodes is evaluated. Second, the node state is divided into four states based on the data packets transmitting. From the view of reliability theory, a data-flow model is analyzed to calculate the state probability of source node and relay node in the time period [0, t]. Third, the node importance is analyzed, and the ranking of node importance values can be used by designers and managers to identify the most important node for improving the wireless sensor network system reliability. At last, a numerical example is given to demonstrate the proposed methods.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

Relay node placement in wireless sensor networks for constrained environment is a critical task due to various unavoidable constraints. One of the most important constraints is unpredictable obstacles. Handling obstacles during relay node placement is complicated because of complexity involved to estimate the shape and size of obstacles. This paper presents an Obstacle-resistant relay node placement strategy (ORRNP). The proposed solution not only handles the obstacles but also estimates best locations for relay node placement in the network. It also does not involve any additional hardware (mobile robots) to estimate node locations thus can significantly reduce the deployment costs. Simulation results show the effectiveness of our proposed approach.


Sign in / Sign up

Export Citation Format

Share Document