scholarly journals Realtime Object Detection Masa Siap Panen Tanaman Sayuran Berbasis Mobile Android Dengan Deep Learning

2021 ◽  
Vol 5 (4) ◽  
pp. 647-655
Author(s):  
Andri Heru Saputra ◽  
Dhomas Hatta Fudholi

Determining the harvesting period can be done visually, physically, computationally, and chemically. Since the harvesting process is crucial, late harvesting will affect post-harvest and production quality. Leafy vegetables have a relatively short ready-to-harvest period. Visual recognition of the harvesting period combined with image processing can recognize harvesting vegetables' visual characteristics. This study aims to build a deep learning-based mobile model to detect real-time vegetable plant objects such as bok choy, spinach, kale, and curly kale to determine whether these vegetables are ready for harvest. Mobile-based architecture is chosen due to latency, privacy, connectivity, and power consumption reason since there is no round-trip communication to the server. In this research, we use MobileNetV3 as the base architecture. To find the best model, we experiment using different image input size. We have obtained a maximum MAP score of 0. 705510 using a 36,000 image dataset. Furthermore, after implementing the model into the Android mobile application, we analyze the best practice in using the application to capture distance. In real-time detection usage, the detection can be done with an ideal distance of 5 cm and 10 cm.  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yanli Shao ◽  
Yiming Zhao ◽  
Feng Yu ◽  
Huawei Zhu ◽  
Jinglong Fang

With the acceleration of urbanization and the increase in the number of motor vehicles, more and more social problems such as traffic congestion have emerged. Accordingly, efficient and accurate traffic flow prediction has become a research hot spot in the field of intelligent transportation. However, traditional machine learning algorithms cannot further optimize the model with the increase of the data scale, and the deep learning algorithms perform poorly in mobile application or real-time application; how to train and update deep learning models efficiently and accurately is still an urgent problem since they require huge computation resources and time costs. Therefore, an incremental learning-based CNN-LTSM model, IL-TFNet, is proposed for traffic flow prediction in this study. The lightweight convolution neural network-based model architecture is designed to process spatiotemporal and external environment features simultaneously to improve the prediction performance and prediction efficiency of the model. Especially, the K-means clustering algorithm is applied as an uncertainty feature to extract unknown traffic accident information. During the model training, instead of the traditional batch learning algorithm, the incremental learning algorithm is applied to reduce the cost of updating the model and satisfy the requirements of high real-time performance and low computational overhead in short-term traffic prediction. Furthermore, the idea of combining incremental learning with active learning is proposed to fine-tune the prediction model to improve prediction accuracy in special situations. Experiments have proved that compared with other traffic flow prediction models, the IL-TFNet model performs well in short-term traffic flow prediction.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 806
Author(s):  
Anika Patel ◽  
Lisa Cheung ◽  
Nandini Khatod ◽  
Irina Matijosaitiene ◽  
Alejandro Arteaga ◽  
...  

Real-time identification of wildlife is an upcoming and promising tool for the preservation of wildlife. In this research project, we aimed to use object detection and image classification for the racer snakes of the Galápagos Islands, Ecuador. The final target of this project was to build an artificial intelligence (AI) platform, in terms of a web or mobile application, which would serve as a real-time decision making and supporting mechanism for the visitors and park rangers of the Galápagos Islands, to correctly identify a snake species from the user’s uploaded image. Using the deep learning and machine learning algorithms and libraries, we modified and successfully implemented four region-based convolutional neural network (R-CNN) architectures (models for image classification): Inception V2, ResNet, MobileNet, and VGG16. Inception V2, ResNet and VGG16 reached an overall accuracy of 75%.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2020 ◽  
Vol 9 (3) ◽  
pp. 25-30
Author(s):  
So Yeon Jeon ◽  
Jong Hwa Park ◽  
Sang Byung Youn ◽  
Young Soo Kim ◽  
Yong Sung Lee ◽  
...  

Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 9-11
Author(s):  
Tomohiro Fukuda

Mixed reality (MR) is rapidly becoming a vital tool, not just in gaming, but also in education, medicine, construction and environmental management. The term refers to systems in which computer-generated content is superimposed over objects in a real-world environment across one or more sensory modalities. Although most of us have heard of the use of MR in computer games, it also has applications in military and aviation training, as well as tourism, healthcare and more. In addition, it has the potential for use in architecture and design, where buildings can be superimposed in existing locations to render 3D generations of plans. However, one major challenge that remains in MR development is the issue of real-time occlusion. This refers to hiding 3D virtual objects behind real articles. Dr Tomohiro Fukuda, who is based at the Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering at Osaka University in Japan, is an expert in this field. Researchers, led by Dr Tomohiro Fukuda, are tackling the issue of occlusion in MR. They are currently developing a MR system that realises real-time occlusion by harnessing deep learning to achieve an outdoor landscape design simulation using a semantic segmentation technique. This methodology can be used to automatically estimate the visual environment prior to and after construction projects.


Sign in / Sign up

Export Citation Format

Share Document