scholarly journals The capability of terrestrial laser scanning for monitoring the displacement of high-rise buildings

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Trung Dung PHAM ◽  
Quoc Khanh PHAM ◽  
Xuan Cuong CAO ◽  
Viet Hung NGUYEN ◽  
Sy Cuong NGO

Recently, terrestrial laser scanner (TLS) has been increasingly used to monitor ofdisplacement of high-rise buildings. The main advantages of this technique are time-saving, higherpoint density, and higher accuracy in comparison with GPS and conventional methods. While TLS isordinary worldwide, there has been no study of the capability of TLS in monitoring the displacement ofhigh-rise buildings yet in Vietnam. The paper's goal is to build a procedure for displacement monitoringof high-rise buildings and assess the accuracy of TLS in this application. In the experiments, a scannedboard with a 60 cm x 60 cm mounted on a moveable monument system is scanned by Faro Focus3DX130. A monitoring procedure using TLS is proposed, including three main stages: site investigation,data acquisition and processing, and displacement determination by the Cloud-to-Cloud method (C2C).As a result, the displacement of the scanned object between epochs is computed. In order to evaluate theaccuracy, the estimated displacement using TLS is compared with the real displacement. The accuracydepends on scanning geometry, surface property, and point density conditions. Our results show that theaccuracy of the estimated displacement is within ± 2 mm for buildings lower than 50 m of height. Thus,TLS completely meets the accuracy requirements of monitoring displacement in the Vietnam Standardsof Engineering Surveying. With such outstanding performance, our workflow of using TLS could beapplied to monitor the displacement of high-rise buildings in the reality of geodetic production inVietnam.

2019 ◽  
Vol 11 (7) ◽  
pp. 880
Author(s):  
Qinghua Li ◽  
Yuchi Ma ◽  
John Anderson ◽  
James Curry ◽  
Jie Shan

One of the intrinsic properties of conventional terrestrial laser scanning technology is the unevenness of its point density over the scene where objects rendered closer to the scanner are more densely covered than the ones far away. This uneven distribution can be amplified as the working range of a laser scanner gets longer. In such case a higher pulse repetition rate (PRR) is applied to the whole scanning area and the scanning time will be dramatically increased. To improve the efficiency of the conventional laser scanning technology, a prototype of adaptive scanning technology, the HRS3D-AS scanner has been developed by Blackmore Sensors and Analytics, Inc. This paper briefly describes the working principles of the adaptive scanner and presents a thorough evaluation on the distributions of the point density in comparison to the conventional scanning. Based on this study, we show that such a new technology can produce a point cloud of more uniform density and less data volume. The overall field scanning time can be reduced by several times compared to the conventional, PRR-fixed scanning. Such properties are expected to significantly simplify the algorithmic development and increase the productivity in data acquisition and processing. The limitations of this new adaptive scanning technology are also discussed in terms of redundant and unresolved details. Finally, recommendations related to the practicing of such adaptive scan are discussed.


This study presents the results of discontinuity mapping using terrestrial laser scanning (TLS) survey and the kinematic method. The results provide the current site and slope condition of comprehensive geological study using terrestrial laser scanning and discontinuity survey at Simpang Pulai, Perak. From the results obtained, it can be concluded that the major potential failures in this area are wedge and plane failures, but there are some area had the potential of toppling failure. This study, however, constitutes a preliminary design consideration and not intended for use in final design or construction. The final design shall be made by the engineer based on the further detail site investigation (S.I.) and other design factors to be used in the actual design of the project.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


Author(s):  
Žymantas Gražulis ◽  
Boleslovas Krikštaponis ◽  
Algirdas Neseckas ◽  
Darius Popovas ◽  
Raimundas Putrimas ◽  
...  

The horizontal deformation analysis of high-rise buildings, quite often is complicated because buildings like chimneys, towers and etc, have complex and asymmetric shapes, consequently there is not always the possibility to apply the method of single points motion analysis. Furthermore, the horizontal deformation analysis is complicated using standard measurement methods like measurements with electronic total stations or optical theodolites. In such case the terrestrial laser scanner could be superior to traditional measurements. However, the terrestrial laser scanner still not widely used to survey building horizontal deformations using high precision measurements. The main aim of this work is to determine the suitability to measure deflections of buildings from the vertical using terrestrial laser scanners and to investigate point cloud data processing. Measurements of horizontal deformation were carried out using the over ground laser scanner and electronic total station. Horizontal deformations of chimneys of thermal power plants were investigated using corresponding methods. Deformation indicators and evaluated measurement accuracies between different methods were compared. Data analysis of terrestrial laser scanning is more complex, time consuming and requires sophisticated hardware resources in comparison with the traditional methods, however results are much more detailed and informative.


2011 ◽  
Vol 66 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Sylvie Soudarissanane ◽  
Roderik Lindenbergh ◽  
Massimo Menenti ◽  
Peter Teunissen

2018 ◽  
Vol 10 (12) ◽  
pp. 1897 ◽  
Author(s):  
Andrea di Filippo ◽  
Luis Sánchez-Aparicio ◽  
Salvatore Barba ◽  
José Martín-Jiménez ◽  
Rocío Mora ◽  
...  

This paper presents an efficient solution, based on a wearable mobile laser system (WMLS), for the digitalization and modelling of a complex cultural heritage building. A procedural pipeline is formalized for the data acquisition, processing and generation of cartographic products over a XV century palace located in Segovia, Spain. The complexity, represented by an intricate interior space and by the presence of important structural problems, prevents the use of standard protocols such as those based on terrestrial photogrammetry or terrestrial laser scanning, making the WMLS the most suitable and powerful solution for the design of restoration actions. The results obtained corroborate with the robustness and accuracy of the digitalization strategy, allowing for the generation of 3D models and 2D cartographic products with the required level of quality and time needed to digitalize the area by a terrestrial laser scanner.


2019 ◽  
Vol 284 ◽  
pp. 08007
Author(s):  
Joanna A. Pawłowicz

3D terrestrial laser scanning (TLS) is a modern measurement technique which enables to obtain a large amount of data in short time. The gathered data is very detailed, thus the scope of its use is vast. Therefore scanners other measurement devices which results in considerable acceleration of stock-taking work. This approach enables to prepare a documentation of a building or to make an assessment of its technical condition using only a 3D cloud of points. Additionally, flexibility of data and advanced computer programmes make it possible to use such data in many sectors, not only in the building trade. The paper shows the issue of using a 3D terrestrial laser scanner ant the TLS (Terrestrial Laser Scanning) technique for identification and measurement of damaged elements on the example of a historical sacral building.


2015 ◽  
Vol 5 (2) ◽  
pp. 13-20
Author(s):  
Cătălina Cristea ◽  
Andreea Florina Jocea

Abstract During last years the need of knowing the forest in its various aspects, quantitative and qualitative, has enabled the appearance of a new technique forestry geomatics. Named as “the science of future” this technique integrates multiple technologies such as Remote Sensing, Airborne Photogrammetry, LIDAR, Geographic Information System (GIS), Global Positioning Systems (GPS) or classical geodetic technology for data acquisition, data processing, data analysis and data management. The purpose is to provide specific information regarding the evaluation natural forestry resources. In this paper will be presented the utilization of terrestrial 3D laser scanner and GIS technologies in forestry inventory.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
TOMASZ Lipecki ◽  
Kim THI THU HUONG

Laser scanners are used more and more as surveying instruments for various applications. With the advance of high precisions systems, laser scanner devices can work in most real-world environments under many different conditions. In the field of mining surveying open up a new method with data capturing. Mining industry requires precise data in order to be able to have a as-built documentation of the facility. Nowadays, the mines are increasingly deepened. For the safe operation of the underground mine, special attention is paid to vertical transport and a set of devices supporting it, mounted in mining shafts. All components must meet stringent criteria for proper operation. The classic geodetic measurements and mechanical tests are long-lasting and do not always provide the full range of information needed about the condition of the object. This paper reports about terrestrial laser scanning method and system mobile terrestrial laser scanning, which has been applied at many vertical shafts in mines of Poland for determining geometric deformation of vertical shaft elements. This system gives high precision 1-3 mm in every horizontal cross – section. Processing time is very quickly and need only few staff to implement all system.


Author(s):  
D. Hoffmeister ◽  
S. Zellmann ◽  
K. Kindermann ◽  
A. Pastoors ◽  
U. Lang ◽  
...  

Terrestrial laser scanning was conducted to document and analyse sites of geoarchaeological interest in Jordan, Egypt and Spain. In those cases, the terrestrial laser scanner LMS-Z420i from Riegl was used in combination with an accurate RTK-GPS for georeferencing of the point clouds. Additionally, local surveying networks were integrated by established transformations and used for indirect registration purposes. All data were integrated in a workflow that involves different software and according results. The derived data were used for the documentation of the sites by accurate plans and cross-sections. Furthermore, the 3D data were analysed for geoarchaeological research problems, such as volumetric determinations, the ceiling thickness of a cave and lighting simulations based on path tracing. The method was reliable in harsh environmental conditions, but the weight of the instrument, the measuring time and the minimum measurement distance were a drawback. However, generally an accurate documentation of the sites was possible. Overall, the integration in a 3D GIS is easily possible by the accurate georeference of the derived data. In addition, local survey results are also implemented by the established transformations. Enhanced analyses based on the derived 3D data shows promising results.


Sign in / Sign up

Export Citation Format

Share Document