scholarly journals Generalized problem of linear copositive programming

Author(s):  
O. I. Kostyukova ◽  
T. V. Tchemisova

We consider a special class of optimization problems where the objective function is linear w.r.t. decision variable х and the constraints are linear w.r.t. х and quadratic w.r.t. index t defined in a given cone. The problems of this class can be considered as a generalization of semi-definite and copositive programming problems. For these problems, we formulate an equivalent semi-infinite problem and define a set of immobile indices that is either empty or a union of a finite number of convex bounded polyhedra. We have studied properties of the feasible sets of the problems under consideration and use them to obtain new efficient optimality conditions for generalized copositive problems. These conditions are CQ-free and have the form of criteria.

2018 ◽  
Vol 10 (8) ◽  
pp. 2694 ◽  
Author(s):  
Hui-Juan Zhang ◽  
Yi-Bo Feng ◽  
Kuo-Ping Lin

The safety and stability of microgrid (MG) operations are closely related to the capacity of distributed energy resources. A conventional MG model usually adopts investment cost as an objective function. Recently, the issue of environmental protection has been gradually emphasized. Therefore, the objective function of the proposed sustainable microgrid (SMG) model in this study considers the investment cost and environmental protective cost and the decision variable is the capacity of the distributed power. Moreover, weather and electric power load data from the National Centers for Environmental Information database (2010) were analyzed in Matlab program for the case study of Alabaster city, United States of America (USA). For the sake of a stable and economical SMG operation, this study also attempts to use a multi-objective capacity optimal model for effectively solving SMG under a multi-population differential evolution (MPDE) algorithm with dominant population (DP), which can improve the convergence speed in an SMG model. At the same time, considering that different scheduling strategies will also affect the optimization results, two strategies are proposed for the priority order of distributed generation sources. The optimization results under the two scheduling strategies show that the validation of the MPDE algorithm in SMG capacity optimization problems can economize investment costs and enable an environmentally friendly power supply.


2020 ◽  
Vol 18 (1) ◽  
pp. 781-793
Author(s):  
Jing Zhao ◽  
Maojun Bin

Abstract In this article, we study the nonlinear and nonsmooth interval-valued optimization problems in the face of data uncertainty, which are called interval-valued robust optimization problems (IVROPs). We introduce the concept of nondominated solutions for the IVROP. If the interval-valued objective function f and constraint functions {g}_{i} are nonsmooth on Banach space E, we establish a nonsmooth and robust Karush-Kuhn-Tucker optimality theorem.


Author(s):  
Pengfei (Taylor) Li ◽  
Peirong (Slade) Wang ◽  
Farzana Chowdhury ◽  
Li Zhang

Traditional formulations for transportation optimization problems mostly build complicating attributes into constraints while keeping the succinctness of objective functions. A popular solution is the Lagrangian decomposition by relaxing complicating constraints and then solving iteratively. Although this approach is effective for many problems, it generates intractability in other problems. To address this issue, this paper presents an alternative formulation for transportation optimization problems in which the complicating attributes of target problems are partially or entirely built into the objective function instead of into the constraints. Many mathematical complicating constraints in transportation problems can be efficiently modeled in dynamic network loading (DNL) models based on the demand–supply equilibrium, such as the various road or vehicle capacity constraints or “IF–THEN” type constraints. After “pre-building” complicating constraints into the objective functions, the objective function can be approximated well with customized high-fidelity DNL models. Three types of computing benefits can be achieved in the alternative formulation: ( a) the original problem will be kept the same; ( b) computing complexity of the new formulation may be significantly reduced because of the disappearance of hard constraints; ( c) efficiency loss on the objective function side can be mitigated via multiple high-performance computing techniques. Under this new framework, high-fidelity and problem-specific DNL models will be critical to maintain the attributes of original problems. Therefore, the authors’ recent efforts in enhancing the DNL’s fidelity and computing efficiency are also described in the second part of this paper. Finally, a demonstration case study is conducted to validate the new approach.


2020 ◽  
Author(s):  
Alberto Bemporad ◽  
Dario Piga

AbstractThis paper proposes a method for solving optimization problems in which the decision-maker cannot evaluate the objective function, but rather can only express a preference such as “this is better than that” between two candidate decision vectors. The algorithm described in this paper aims at reaching the global optimizer by iteratively proposing the decision maker a new comparison to make, based on actively learning a surrogate of the latent (unknown and perhaps unquantifiable) objective function from past sampled decision vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or quadratic programming, satisfying if possible the preferences expressed by the decision maker on existing samples. The surrogate is used to propose a new sample of the decision vector for comparison with the current best candidate based on two possible criteria: minimize a combination of the surrogate and an inverse weighting distance function to balance between exploitation of the surrogate and exploration of the decision space, or maximize a function related to the probability that the new candidate will be preferred. Compared to active preference learning based on Bayesian optimization, we show that our approach is competitive in that, within the same number of comparisons, it usually approaches the global optimum more closely and is computationally lighter. Applications of the proposed algorithm to solve a set of benchmark global optimization problems, for multi-objective optimization, and for optimal tuning of a cost-sensitive neural network classifier for object recognition from images are described in the paper. MATLAB and a Python implementations of the algorithms described in the paper are available at http://cse.lab.imtlucca.it/~bemporad/glis.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Sibyla Andreuchetti ◽  
Vinícius M. Oliveira ◽  
Toshio Fukuda

SUMMARY Many different control schemes have been proposed in the technical literature to control the special class of underactuated systems, the- so-called brachiation robots. However, most of these schemes are limited with regard to the method by which the robot executes the brachiation movement. Moreover, many of these control strategies do not take into account the energy of the system as a decision variable. To observe the behavior of the system’s, energy is very important for a better understanding of the robot dynamics while performing the motion. This paper discusses a variety of energy-based strategies to better understand how the system’s energy may influence the type of motion (under-swing or overhand) the robot should perform.


Sign in / Sign up

Export Citation Format

Share Document