scholarly journals Approximate evaluation of the functional integrals generated by the Dirac equation with pseudospin symmetry

Author(s):  
Е. A. Ayryan ◽  
М. Hnatic ◽  
V. В. Malyutin

 In this paper, the matrix-valued functional integrals generated by the Dirac equation with relativistic Hamiltonian are considered. The Dirac Hamiltonian contains scalar and vector potentials. The sum of the scalar and vector potentials is equal to zero, i.e., the case of pseudospin symmetry is investigated. In this case, a Schrödinger-type equation for the eigenvalues and eigenfunctions of the relativistic Hamiltonian generating the functional integral is constructed. The eigenvalues and eigenfunctions of the Schrödinger-type operator are found using the Sturm sequence method and the reverse iteration method. A method for the evaluation of matrix-valued functional integrals is proposed. This method is based on the relation between the functional integral and the kernel of the evolution operator with the relativistic Hamiltonian and the expansion of the kernel of the evolution operator in terms of the found eigenfunctions of the relativistic Hamiltonian. 

Author(s):  
V. B. Malyutin

Approximate evaluation of functional integrals containing a centrifugal potential is considered. By a centrifugal potential is understood a potential arising from a centrifugal force. A combination of the method based on expanding into a series of the eigenfunctions of a Hamiltonian generating a functional integral and the Sturm sequence method for the eigenvalue problem is used for approximate evaluation of functional integrals. This combination allows one to significantly reduce a computation time and a used computer memory volume in comparison to other known methods.


Author(s):  
E. A. Ayryan ◽  
M. Hnatic ◽  
V. B. Malyutin

An approximate evaluation of matrix-valued functional integrals generated by the relativistic Hamiltonian is considered. The method of evaluation of functional integrals is based on the expansion in the eigenfunctions of Hamiltonian generating the functional integral. To find the eigenfunctions and the eigenvalues the initial Hamiltonian is considered as a sum of the unperturbed operator and a small correction to it, and the perturbation theory is used. The eigenvalues and the eigenfunctions of the unperturbed operator are found using the Sturm sequence method and the reverse iteration method. This approach allows one to significantly reduce the computation time and the used computer memory compared to the other known methods.


2018 ◽  
Vol 19 (1) ◽  
pp. 17 ◽  
Author(s):  
Atachegbe Clement Onate ◽  
Akpan Ndem Ikot ◽  
Michael Chukwudi Onyeaju ◽  
Osarodion Ebomwonyi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ituen B. Okon ◽  
E. Omugbe ◽  
Akaninyene D. Antia ◽  
C. A. Onate ◽  
Louis E. Akpabio ◽  
...  

AbstractIn this research article, the modified approximation to the centrifugal barrier term is applied to solve an approximate bound state solutions of Dirac equation for spin and pseudospin symmetries with hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential using parametric Nikiforov–Uvarov method. The energy eigen equation and the unnormalised wave function were presented in closed and compact form. The nonrelativistic energy equation was obtain by applying nonrelativistic limit to the relativistic spin energy eigen equation. Numerical bound state energies were obtained for both the spin symmetry, pseudospin symmetry and the non relativistic energy. The screen parameter in the potential affects the solutions of the spin symmetry and non-relativistic energy in the same manner but in a revised form for the pseudospin symmetry energy equation. In order to ascertain the accuracy of the work, the numerical results obtained was compared to research work of existing literature and the results were found to be in excellent agreement to the existing literature. The partition function and other thermodynamic properties were obtained using the compact form of the nonrelativistic energy equation. The proposed potential model reduces to Hulthen and exponential inversely quadratic potential as special cases. All numerical computations were carried out using Maple 10.0 version and Matlab 9.0 version softwares respectively.


1990 ◽  
Vol 05 (15) ◽  
pp. 3029-3051 ◽  
Author(s):  
EDWARD FARHI ◽  
SAM GUTMANN

A quantum Hamiltonian, defined on the half-line, will typically not lead to unitary time evolution unless the domain of the Hamiltonian is carefully specified. Different choices of the domain result in different Green’s functions. For a wide class of non-relativistic Hamiltonians we show how to define the functional integral on the half-line in a way which matches the various Green’s functions. To do so we analytically continue, in time, functional integrals constructed with real measures that give weight to paths on the half-line according to how much time they spend near the origin.


1994 ◽  
Vol 50 (1) ◽  
pp. 29-33 ◽  
Author(s):  
M. E. Grypeos ◽  
C. G. Koutroulos ◽  
G. J. Papadopoulos

2021 ◽  
Vol 2090 (1) ◽  
pp. 012038
Author(s):  
A Schulze-Halberg

Abstract We construct the explicit form of higher-order Darboux transformations for the two-dimensional Dirac equation with diagonal matrix potential. The matrix potential entries can depend arbitrarily on the two variables. Our construction is based on results for coupled Korteweg-de Vries equations [27].


2016 ◽  
Vol 24 (2) ◽  
Author(s):  
Luiz C. L. Botelho

AbstractWe analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.


Sign in / Sign up

Export Citation Format

Share Document