scholarly journals Regulation of interphase processes by surfactants and their compositions in the development of oil recovery technology

Author(s):  
O. N. Opanasenko ◽  
N. P. Krutko ◽  
O. V. Luksha ◽  
O. L. Zhigalova

Physicochemical aspects of the regulation of interfacial processes occurring at the oil-water-rock interface in the presence of ionic surfactants and their compositions are considered with the goal of developing efficient, scientifically grounded innovative technologies ensuring enhanced oil recovery and refining. A complex of studies of surface phenomena in the presence of ionic surfactants made it possible to identify criteria for evaluating the effectiveness of their action at the oil-water-rock interface, which makes it possible to predict the behavior of surfactants in real conditions of oil production and to use them purposefully in various enhanced oil recovery technologies.

2010 ◽  
Vol 49 (24) ◽  
pp. 12756-12761 ◽  
Author(s):  
Ajay Mandal ◽  
Abhijit Samanta ◽  
Achinta Bera ◽  
Keka Ojha

2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2018 ◽  
Vol 124 (2) ◽  
Author(s):  
Hassan Soleimani ◽  
Mirza Khurram Baig ◽  
Noorhana Yahya ◽  
Leila Khodapanah ◽  
Maziyar Sabet ◽  
...  

2021 ◽  
pp. 131-143
Author(s):  
F. A. Koryakin ◽  
N. Yu. Tretyakov ◽  
O. B. Abdulla ◽  
V. G. Filippov

Nowadays the share of hard-to-recover reserves is growing, and to maintain oil production on necessarily level, we need to involve hard-to-recover reserves or to increase oil production efficiency on a brownfields due to enhanced oil recovery. The efficiency of enhanced oil recovery can be estimated by oil saturation reduction. Single-well-chemical-tracer-test (SWCTT) is increasingly used to estimate oil saturation before and after enhanced oil recovery application. To interpret results of SWCTT, reservoir simulation is recommended. Oil saturation has been calculated by SWCTT interpretation with use of reservoir simulator (CMG STARS). Distribution constants has been corrected due to results of real core sample model, and core tests has been successfully simulated. Obtained values of oil saturation corresponds with real oil saturation of samples. Thus, SWCTT as a method of oil saturation estimation shows good results. This method is promising for enhanced oil recovery efficiency estimation.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1073 ◽  
Author(s):  
Goshtasp Cheraghian ◽  
Sara Rostami ◽  
Masoud Afrand

Nanoparticles (NPs) are known as important nanomaterials for a broad range of commercial and research applications owing to their physical characteristics and properties. Currently, the demand for NPs for use in enhanced oil recovery (EOR) is very high. The use of NPs can drastically benefit EOR by changing the wettability of the rock, improving the mobility of the oil drop and decreasing the interfacial tension (IFT) between oil/water. This paper focuses on a review of the application of NPs in the flooding process, the effect of NPs on wettability and the IFT. The study also presents a review of several investigations about the most common NPs, their physical and mechanical properties and benefits in EOR.


1981 ◽  
Vol 8 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Douglas Argyle Campbell

This survey has described the foreseeable environmental and economic impacts of enhanced oil-recovery (EOR) on U.S. oil production between 1980 and 2000. It has indicated that EOR production may be expected to rise from the approximately 4% of total U.S. oil production in 1980, to the projected approximations of 10.5% in 1985, 18.5% in 1990, 23% in 1995, and perhaps 30% in 2000. These percentages are substantial, particularly as this form of oil production has been, up until recently, quite limited. Many of the processes are still in the laboratory stage of development—particularly chemical and microbiological processes. With continued laboratory experimentation and field research, it is possible that the percentages could be even greater than the above suggestions as we reach into the 21st Century.The potential for EOR is very considerable and probably great, as it could involve some two-thirds of all the oil already identified in the United States and assumed to be unrecoverable by primary or secondary means. The U.S. Department of Energy (DOE) has given important incentives to the EOR industry to make such increased production worth while through raising prices to compensate for the cost of equipment, and deducting expenditure on such equipment from a new ‘Windfall Profit Tax’.Along with EOR's economic potential, there are two major ecological dangers: air pollution through thermal processes, and ground-water pollution through chemical processes. It is essential to the well-being of the United States that clean air standards be adhered to, and that the equipment necessary to purify the air (particularly in California) be available and operate to reduce emissions.A great deal more research needs to be undertaken towards developing safeguards to ensure that drinkingwater is not contaminated by dangerous chemicals which may be used in ‘chemical flooding’ of depleted oil-wells. Many of these chemicals have merely ‘come out of the laboratory’ and are sold by chemical companies without sufficient field-testing. How far these chemicals could travel underground must still be determined. It is also important to ensure that carbon dioxide, fed into a geological formation, can be recaptured and re-injected without escaping into the atmosphere, where there is the potential danger of a global ‘greenhouse effect’ upon the world's temperature. Finally, it is important to safeguard the Earth against microbes which could be injected into its geological strata without sufficient knowledge of their impact on the ecology of the Earth. Thus, much environmental research will be called for with these new methods of producing oil for Man's use.This study has reviewed the four major methods of EOR that are currently being utilized or proposed— thermal processes, miscible and semi-miscible processes, chemical processes, and microbiological processes, and found that they could all have ongoing possibilities.Given appropriate environmental safeguards, EOR should become a major force in the production of energy for the United States over the next 20 years, and it seems reasonable to expect that much the same could apply to other parts of the world. However, it is important that safeguarding the environment should guide the DOE in terms of its incentive programmes for specific processes.


SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 319-330 ◽  
Author(s):  
Dai Makimura ◽  
Makoto Kunieda ◽  
Yunfeng Liang ◽  
Toshifumi Matsuoka ◽  
Satoru Takahashi ◽  
...  

Summary Molecular simulation is a powerful technique for obtaining thermodynamic properties of a system of given composition at a specific temperature and pressure, and it enables us to visualize microscopic phenomena. In this work, we used simulations to study interfacial phenomena and phase equilibria, which are important to CO2-enhanced oil recovery (EOR). We conducted molecular dynamics (MD) simulation of an oil/water interface in the presence of CO2. It was found that CO2 was enriched at the interfacial region under all thermal conditions. Whereas the oil/water interfacial tension (IFT) increases with pressure, CO2 reduces the IFT by approximately one-third at low pressure and one-half at higher pressure. Further analysis on the basis of our MD trajectories shows that the O=C=O bonds to the water with a “T-shaped” structure, which provides the mechanism for CO2 enrichment at the oil/water interface. The residual nonnegligible IFT at high pressures implies that the connate or injected water in a reservoir strongly influences the transport of CO2/oil solutes in that reservoir. We used Gibbs ensemble Monte Carlo (GEMC) simulation to compute phase equilibria and obtain ternary phase diagrams of such systems as CO2/n-butane/N2 and CO2/n-butane/n-decane. Simulating hydrocarbon fluids with a mixture of CO2 and N2 enables us to evaluate the effects of N2 impurity on CO2-EOR. It also enables us to study the phase behavior, which is routinely used to evaluate the minimum miscibility pressure (MMP). We chose these two systems because experimental data are available for them. Our calculated phase equilibria are in fair agreement with experiments. We also discuss possible ways to improve the predictive capability for CO2/hydrocarbon systems. GEMC and MD simulations of systems with heavier hydrocarbons are straightforward and enable us to combine molecular-level thinking with process considerations in CO2-EOR.


Sign in / Sign up

Export Citation Format

Share Document