scholarly journals Binders for impregnation of fibrous fillers in the production of prepregs

Author(s):  
I. A. Latyshevich ◽  
A. I. Hapankova ◽  
N. G. Kozlov ◽  
A. V. Polkhovsky

The article presents a review of the scientific and technical information from Russian and foreign periodicals, patents for inventions in the field of using various materials for the production of prepregs. Data on global manufacturers and applied technologies are provided. Prepreg is a polymer composite material based on carbon or glass fabrics. The technology for its production consists in impregnating the reinforcing material with a special binder. Typically, it is the resin in an uncured or partially cured state. Particular attention to polymer composite materials based on glass fibers is paid. The binder is a solution of organic substances, which is used as an impregnating agent. The combination of fibrous fillers and impregnating composition makes it easy to shape the final product. It is showed that the main areas of prepreg applications are the automotive industry, construction, transport, sports equipment, as well as various sectors of the national economyThe composite materials are shown to have a number of advantages, including economic ones. According to the conducted scientific and patent search, the most common components of polymer composite materials are epoxy resin and various types of hardeners.

2020 ◽  
pp. 27-39
Author(s):  
Mazen Alsaid ◽  
Ali Salamekh ◽  
Viktor A. Mamontov ◽  
Gyulaga Y. Azizova

The mechanical properties of polymer composite materials used in shipbuilding are examined in this article. The samples from polymer composite materials based on glass fibers and polyester resin were made for this purpose. The manufacturing samples technique from polymer composite materials for mechanical test operation is represented here. The influence of woven roving fabric layers number ratio to the number of glass-fiber mat layers under testing samples for expansion, compression and 3 point bending has been determined by mechanical tests method. As the data processing result obtained in the experiment course it has been determined that the number of woven roving fabric layers increase with polymer composite materials increases the breaking load and tensile ultimate strength and decreases these values under compression and 3 point bending. The results obtained in this article are the basis for identifying polymer composite materials mechanical properties with different reinforcement schemes in case of their application in ship structures such as a material for transport vessels superstructure .


2021 ◽  
pp. 74-82
Author(s):  
Valery Pechenyuk ◽  
◽  
Yuri Popov ◽  

The analysis of existing aircraft structures made of metal-polymer composite materials is carried out, and a list of them with passport characteristics is compiled. The Fokker F-27 Friendship, Boeing-777 and Airbus A380, which use ARALL and GLARE materials, were selected as the aircraft under study. Formulas are determined and the distribution of normal force flows between metal and composite elements in the composition of MPCM based on aluminum sheets (aluminum-fiberglass – SIAL- 1-1, SIAL-3-1 and SIAL-1441 (9/8)) and titanium alloys (samples of titanium-carbon fiber from the patent-Example 1 and Example 3). To determine these parameters, the formulas used for a composite structure made of different materials are used. On the basis of the specification known MPCM the modified formula mixture rule for calculating the strength of new materials with a given set of orientation angles of PCM and the presence of layers of sheet metal, a comparison with standard mechanical characteristics and to show the efficiency of these formulas. Using these formulas, you can determine the strength characteristics for an arbitrary composition of the MPCM package. The features of the choice of design permissible stresses for the design of the airframe of a mainline aircraft made of metal-polymer composite material are highlighted. The concept of designing aircraft airframe elements using MPCM is considered. The results of this work will allow us to determine the rational components of the metal-polymer composite material and the structure of their distribution in the airframe design at the preliminary design stage.


2021 ◽  
Vol 887 ◽  
pp. 105-109
Author(s):  
A.M. Iuvshin ◽  
Y.S. Andreev ◽  
S.D. Tretyakov

This paper studies deployable elements which are used in satellites and different terrestrial antenna devices. Many deployable elements are made from steel or thermoset polymer composite materials and have the following disadvantages like length limitation of deployable elements, labour intensity of manufacturing process of deployable elements etc. For this purpose a deployable tube boom element was chosen and a forming method for manufacturing deployable tube element from thermoplastic polymer composite material was developed.


Author(s):  
I. V. Cheremukhina

The use of various physical influences is an economical and highly effective direction for regulating and improving the characteristics of the modified reinforced polymer composite materials developed in this work. The methods of energy effects studied in this work were used at the stage of impregnation of technical threads of various chemical nature with an oligomeric binder and a hardener (when preparing prepregs by the traditional method) or with a binder solution and a curing system (when preparing prepregs by the method of layered application of components) Based on the conducted research, a classification of the applied methods of physical modification according to the principle of the influence of energy fields is proposed. The studied methods of energy effects are divided into orienting and energetically energizing effects. The first group includes treatments with constant magnetic (PMP) or electric fields (PEP), and constant mechanical loads. The second group includes energy effects that have a wave nature (energetically energizing), and vibration, ultrasonic effects, and ultraviolet radiation are attributed to them. Modification methods of the first group contribute to a decrease in the mobility of binder molecules during curing, while the formation of branches of polymer chains occurs during the curing process, which leads to a predominant increase in the destructive stress during static bending. Energetically energizing effects contribute to the relative acceleration of the process of linear growth of polymer chains during curing, which is accompanied by the formation of a more sparsely cross-linked mesh structure, which leads to a predominant increase in impact strength. Of the two competing processes in the curing of epoxy oligomers, this one requires a higher activation energy, which is confirmed by the results of studies. Analyzing the results obtained, it can be concluded that the modification methods used in the work allow not only to obtain polymer composite materials with high strength characteristics, but also to directly adjust the properties of composites depending on the requirements for the products. Orienting modification methods lead to hardening of the resulting polymer composite material with a predominant increase in the destructive stress during static bending from 20 to 47%. When using energetically energizing influences in the technology of producing reinforced reactoplasts, the impact strength increases mainly from 19 to 40%.


2020 ◽  
Vol 992 ◽  
pp. 347-352
Author(s):  
V.V. Bazheryanu ◽  
I.V. Zaychenko ◽  
E.P. Zharikova

The object of research is the repair processes of parts made of polymer composite materials using a local heating element. The goal is the development of technology, the selection of equipment for repair of parts and assemblies from polymer composite materials using a local heating element and a vacuum source outside the production area, as part of the aircraft. In the process of performing the work, an analysis and review of the existing equipment for local repair of parts from polymer composite materials was carried out. Equipment for local repair of own and imported production was tested. Based on the results of testing and market analysis, equipment was selected that meets the requirements of ND for the manufacture of parts from polymer composite materials. A technical process for repairing parts using a local heating element and a device for hot gluing has been developed.


2020 ◽  
pp. 81-89
Author(s):  
O.N. Klimenko ◽  
◽  
M.I. Valueva ◽  
A.N. Rybnikova ◽  
◽  
...  

Рrovides an overview of scientific and technical information – Russian and foreign periodicals, patents for inventions – in the field of the use of polymeric materials in the sports industry and sports infrastructure. Data on world manufacturers, applied technologies, Russian developments in this direction are presented, examples of the practical use of polymeric materialsin the sports industry are shown. Special attention is paid to polymer composite materials,in particular, based on carbon fibers.


2019 ◽  
Vol 816 ◽  
pp. 19-26 ◽  
Author(s):  
Aues A. Beev ◽  
S.Yu. Khashirova ◽  
D.A. Beeva ◽  
M.U. Shokumova ◽  
R.B. Tkhakakhov

The paper gives a brief description of carbon and glass fibers used to obtain polymer composite materials with high thermal, physical and mechanical characteristics. Some methods for surface activation of carbon and fiberglass, which will be used to increase the adhesion interactions at the fiber-polymer boundaries, are presented.


2019 ◽  
Vol 816 ◽  
pp. 1-8
Author(s):  
Aues A. Beev ◽  
S.Yu. Khashirova ◽  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
D.A. Beeva ◽  
...  

The paper presents the results of studies on the activation of the surface of carbon and glass fibers by thermal and chemical treatment with acids and mixtures of acids. Carbon and glass fibers with an activated surface are of practical interest for the production of polymer composite materials with high thermal, physical and mechanical characteristics.


2015 ◽  
Vol 71 (11-12) ◽  
pp. 443-445 ◽  
Author(s):  
S. N. Grigor’ev ◽  
A. N. Krasnovskii ◽  
K. V. Kvachev

Sign in / Sign up

Export Citation Format

Share Document