scholarly journals Classification of energy impacts by their effect on the structure and properties of reinforced reactoplasts

Author(s):  
I. V. Cheremukhina

The use of various physical influences is an economical and highly effective direction for regulating and improving the characteristics of the modified reinforced polymer composite materials developed in this work. The methods of energy effects studied in this work were used at the stage of impregnation of technical threads of various chemical nature with an oligomeric binder and a hardener (when preparing prepregs by the traditional method) or with a binder solution and a curing system (when preparing prepregs by the method of layered application of components) Based on the conducted research, a classification of the applied methods of physical modification according to the principle of the influence of energy fields is proposed. The studied methods of energy effects are divided into orienting and energetically energizing effects. The first group includes treatments with constant magnetic (PMP) or electric fields (PEP), and constant mechanical loads. The second group includes energy effects that have a wave nature (energetically energizing), and vibration, ultrasonic effects, and ultraviolet radiation are attributed to them. Modification methods of the first group contribute to a decrease in the mobility of binder molecules during curing, while the formation of branches of polymer chains occurs during the curing process, which leads to a predominant increase in the destructive stress during static bending. Energetically energizing effects contribute to the relative acceleration of the process of linear growth of polymer chains during curing, which is accompanied by the formation of a more sparsely cross-linked mesh structure, which leads to a predominant increase in impact strength. Of the two competing processes in the curing of epoxy oligomers, this one requires a higher activation energy, which is confirmed by the results of studies. Analyzing the results obtained, it can be concluded that the modification methods used in the work allow not only to obtain polymer composite materials with high strength characteristics, but also to directly adjust the properties of composites depending on the requirements for the products. Orienting modification methods lead to hardening of the resulting polymer composite material with a predominant increase in the destructive stress during static bending from 20 to 47%. When using energetically energizing influences in the technology of producing reinforced reactoplasts, the impact strength increases mainly from 19 to 40%.

2020 ◽  
Vol 17 (2) ◽  
pp. 170-178
Author(s):  
Rezza Ruzuqi

Analysis of the mechanical properties of Polymer Composite Materials (PCM) fiberglass-reinforced is important for fiberboat manufacturing. Mechanical properties can be determined by carrying out mechanical testing. The mechanical properties of this research using the Impact test have been completed. In this research each test was carried out on variations in the amount of fiberglass lamination CSM 300, CSM 450 and WR 600 and the variation in weight percentages of 99.5% -0.5%, 99% -1%, 98.5% -1 , 5%, 98% -2% and 97.5% -2.5% have been used. The result show that the more the amount of laminate the greater impact strength, which is equal to 413,712 MPa, and the more the percentage hardener the greater the impact strength 2.0 wt .-%, which is equal to 416,487 MPa.


2021 ◽  
pp. 74-82
Author(s):  
Valery Pechenyuk ◽  
◽  
Yuri Popov ◽  

The analysis of existing aircraft structures made of metal-polymer composite materials is carried out, and a list of them with passport characteristics is compiled. The Fokker F-27 Friendship, Boeing-777 and Airbus A380, which use ARALL and GLARE materials, were selected as the aircraft under study. Formulas are determined and the distribution of normal force flows between metal and composite elements in the composition of MPCM based on aluminum sheets (aluminum-fiberglass – SIAL- 1-1, SIAL-3-1 and SIAL-1441 (9/8)) and titanium alloys (samples of titanium-carbon fiber from the patent-Example 1 and Example 3). To determine these parameters, the formulas used for a composite structure made of different materials are used. On the basis of the specification known MPCM the modified formula mixture rule for calculating the strength of new materials with a given set of orientation angles of PCM and the presence of layers of sheet metal, a comparison with standard mechanical characteristics and to show the efficiency of these formulas. Using these formulas, you can determine the strength characteristics for an arbitrary composition of the MPCM package. The features of the choice of design permissible stresses for the design of the airframe of a mainline aircraft made of metal-polymer composite material are highlighted. The concept of designing aircraft airframe elements using MPCM is considered. The results of this work will allow us to determine the rational components of the metal-polymer composite material and the structure of their distribution in the airframe design at the preliminary design stage.


2021 ◽  
Vol 887 ◽  
pp. 105-109
Author(s):  
A.M. Iuvshin ◽  
Y.S. Andreev ◽  
S.D. Tretyakov

This paper studies deployable elements which are used in satellites and different terrestrial antenna devices. Many deployable elements are made from steel or thermoset polymer composite materials and have the following disadvantages like length limitation of deployable elements, labour intensity of manufacturing process of deployable elements etc. For this purpose a deployable tube boom element was chosen and a forming method for manufacturing deployable tube element from thermoplastic polymer composite material was developed.


2020 ◽  
Vol 992 ◽  
pp. 347-352
Author(s):  
V.V. Bazheryanu ◽  
I.V. Zaychenko ◽  
E.P. Zharikova

The object of research is the repair processes of parts made of polymer composite materials using a local heating element. The goal is the development of technology, the selection of equipment for repair of parts and assemblies from polymer composite materials using a local heating element and a vacuum source outside the production area, as part of the aircraft. In the process of performing the work, an analysis and review of the existing equipment for local repair of parts from polymer composite materials was carried out. Equipment for local repair of own and imported production was tested. Based on the results of testing and market analysis, equipment was selected that meets the requirements of ND for the manufacture of parts from polymer composite materials. A technical process for repairing parts using a local heating element and a device for hot gluing has been developed.


Author(s):  
I. V. Zlobina ◽  
A. A. Korotich

Due to the widespread use of carbon fiber-reinforced polymer composite materials (PCM) in the structural elements of aircraft with a distributed surface layer of lightning-proof coating (MFP) in the form of metal grids to reduce the risk of lightning strikes and the possibility of increasing their strength characteristics by processing in the microwave electromagnetic field, the need to study the impact of this method of processing on the resistance of PCM to high voltage electrical discharges. The studies of the impact of the discharge voltage 180…200 kV on samples of PCM with the minimum wage and no minimum wage. It is established that pretreatment of samples of the cured polymer composite MW in a microwave electromagnetic field energy flux density (17…18)104 µw/cm2 does not degrade their molniezaschita characteristics and contributes to reducing the size of the damaged area up to 1.5 times. Samples processed in the microwave electromagnetic field without MSP do not have delaminations and burns in contrast to the control ones. The obtained results indicate the possibility of strengthening treatment in the microwave electromagnetic field of structural elements of carbon fiber distributed in the surface layer of the MSP in the form of a metal grid.


2020 ◽  
pp. 27-39
Author(s):  
Mazen Alsaid ◽  
Ali Salamekh ◽  
Viktor A. Mamontov ◽  
Gyulaga Y. Azizova

The mechanical properties of polymer composite materials used in shipbuilding are examined in this article. The samples from polymer composite materials based on glass fibers and polyester resin were made for this purpose. The manufacturing samples technique from polymer composite materials for mechanical test operation is represented here. The influence of woven roving fabric layers number ratio to the number of glass-fiber mat layers under testing samples for expansion, compression and 3 point bending has been determined by mechanical tests method. As the data processing result obtained in the experiment course it has been determined that the number of woven roving fabric layers increase with polymer composite materials increases the breaking load and tensile ultimate strength and decreases these values under compression and 3 point bending. The results obtained in this article are the basis for identifying polymer composite materials mechanical properties with different reinforcement schemes in case of their application in ship structures such as a material for transport vessels superstructure .


Sign in / Sign up

Export Citation Format

Share Document