scholarly journals A Numerical Study of the Flow Interference between Two Circular Cylinders in Tandem by Scale-Adaptive Simulation Model

2020 ◽  
Vol 13 (1) ◽  
pp. 169-183
Author(s):  
M. Grioni ◽  
S. A. Elaskar ◽  
A. E. Mirasso ◽  
◽  
◽  
...  
2020 ◽  
Vol 107 ◽  
pp. 106308
Author(s):  
Pikai Zhang ◽  
Yu Liu ◽  
Zhiyong Li ◽  
Hanru Liu ◽  
Yannian Yang

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 467-475 ◽  
Author(s):  
Habib-Olah Sayehvand ◽  
Sakene Yari ◽  
Parsa Basiri

Staggered arrangement is one of the common configurations in heat exchangers that make better mixing of flow and heat transfer augmentation than other arrangements. In this paper forced convection heat transfer over three isothermal circular cylinders in staggered configuration in isotropic packed bed was investigated. In this work laminar 2-D incompressible steady-state equations of momentum and energy were solved numerically by finite volume method. Simulation was done in three Reynolds numbers of 80, 120, and 200. The results indicate that, using porous medium the Nusselt number enhanced considerably for any of cylinders and it presents thin temperature contours for them. Also is shown that by increasing Reynolds number, the heat transfer increased in both channel but the growth rate of it in porous media is larger. In addition, results of simulation in porous channel show that with increasing Peclet number, heat transfer increased logarithmically.


Author(s):  
M. Yasep Setiawan ◽  
Wawan Purwanto ◽  
Wanda Afnison ◽  
Nuzul Hidayat

This study discusses the numerical study of two-dimensional analysis of flow through circular cylinders. The original physical information entered in the equation governing most of the modeling is transferred into a numerical solution. Fluid flow on two-dimensional circular cylinder wall using high Reynolds k-ε modeling (Re = 106), Here we will do 3 modeling first oder upwind, second order upwind and third order MUSCL by using k-ε standard.  The general procedure for this research is formulated in detail for allocations in the dynamic analysis of fluid computing. The results of this study suggest that MUSCL's third order modeling gives more accurate results better than other models.


2016 ◽  
Vol 26 (5) ◽  
pp. 1416-1432 ◽  
Author(s):  
Saman Rashidi ◽  
Javad Abolfazli Esfahani ◽  
Mohammad Sadegh Valipour ◽  
Masoud Bovand ◽  
Ioan Pop

Purpose – The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures. Design/methodology/approach – The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively. Findings – The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions. Originality/value – To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.


2016 ◽  
Vol 753 ◽  
pp. 022050 ◽  
Author(s):  
K Rogowski ◽  
M O L Hansen ◽  
R Maroński ◽  
P Lichota

2018 ◽  
Author(s):  
Yang Zhang ◽  
Li Sheng ◽  
Jinlong Duan ◽  
Ke Chen ◽  
Yunxiang You

Flow interference between two identical circular cylinders in side-by-side arrangement with one stationary and the other forced to oscillate in the transverse direction are studied. Direct numerical simulations are performed by Lattice Boltzmann Method (LBM) with a constant Reynolds number of 100. We consider four representative pitch ratios, T/D, ranging from 1.2 to 4, corresponding to four distinct flow patterns for two stationary side-by-side cylinders. The forced oscillation is fixed at a constant small amplitude of A/D = 0.1. A wide range of dimensionless oscillating frequency (fe/fs = [0.5, 2]) is examined. The results show that the response state of flow around two side-by-side cylinders when one cylinder is forced to vibrate is quite different from that of the corresponding stationary system. Four response states are identified according to the different characteristics on the power spectra and phase portrait of lift forces on cylinders. In addition, hydrodynamic forces on the cylinders are analyzed in terms of root-mean-square and time-averaged quantities. It is found that the pitch ratio, oscillating frequency and response state play different roles in determining the force quantities.


Sign in / Sign up

Export Citation Format

Share Document