scholarly journals The Response of Iranian Spring Wheat Cultivars to Heat Stress at Anthesis and Grain Filling Stages

2020 ◽  
Vol 12 (33) ◽  
pp. 102-109
Author(s):  
Ahmad rezaeizadeh ◽  
valiollah Mohammadi ◽  
mohammadreza siahpoosh ◽  
ali ahmadi ◽  
◽  
...  
2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


2014 ◽  
Vol 201 (1) ◽  
pp. 32-48 ◽  
Author(s):  
M. Vignjevic ◽  
X. Wang ◽  
J. E. Olesen ◽  
B. Wollenweber

2020 ◽  
Vol 206 (6) ◽  
pp. 722-733 ◽  
Author(s):  
Siegfried Schittenhelm ◽  
Tina Langkamp‐Wedde ◽  
Martin Kraft ◽  
Lorenz Kottmann ◽  
Katja Matschiner

Crop Science ◽  
2019 ◽  
Vol 59 (2) ◽  
pp. 684-696 ◽  
Author(s):  
Raju Bheemanahalli ◽  
V. S. John Sunoj ◽  
Gautam Saripalli ◽  
P. V. Vara Prasad ◽  
H. S. Balyan ◽  
...  

Plant Science ◽  
2015 ◽  
Vol 230 ◽  
pp. 33-50 ◽  
Author(s):  
Xiao Wang ◽  
Burcu Seckin Dinler ◽  
Marija Vignjevic ◽  
Susanne Jacobsen ◽  
Bernd Wollenweber

2021 ◽  
Vol 67 (No. 2) ◽  
pp. 71-76
Author(s):  
Milan Mirosavljević ◽  
Sanja Mikić ◽  
Ankica Kondić Špika ◽  
Vesna Župunski ◽  
Rong Zhou ◽  
...  

High temperature decreases winter wheat grain yield by reducing the grain number and grain weight. The effect of heat stress on spike grain distribution and weight of individual grains within spike and spikelets was less studied. Our aim is to identify influence of high temperatures during different phenological stages on spike grain distribution and weight and to explore genotypic variation of the studied wheat cultivars. Within this study, a controlled experiment was conducted with 12 different winter wheat cultivars under heat stress at anthesis and mid-grain filling stage. The results showed that spike grain weight, thousand-grain weight and grain number per spike decreased moderately in treatments with individual heat stress at anthesis and mid-grain filling period, respectively, which decreased severely in the multiple heat stressed plants at both stages compared with the control treatment. Heat stress decreased number of spikelets with grains. Grain weight at the G1, G2 and G3 positions had a positive relationship with spike grain weight. Among the studied Serbian wheat cultivars Subotičanka and Renesansa were identified as the most heat tolerant and sensitive, respectively. Heat tolerance of the studied cultivars should be based on the cultivar capacity to retain higher grain weight, and to maintain production of distal spikelet grains.


2009 ◽  
Vol 36 (3) ◽  
pp. 234 ◽  
Author(s):  
Urška Bukovnik ◽  
Jianming Fu ◽  
Miranda Bennett ◽  
P. V. Vara Prasad ◽  
Zoran Ristic

Protein elongation factors, EF-Tu and EF-1α, have been implicated in cell response to heat stress. We investigated the expression (accumulation) of EF-Tu and EF-1α in mature plants of spring wheat cultivars Kukri and Excalibur, and tested the hypothesis that cultivars with contrasting tolerance to heat stress differ in the accumulation of these elongation factors under prolonged exposure to high temperature (16 days at 36/30°C). In addition, we investigated the expression of EF-Tu and EF-1α in young plants experiencing a 24-h heat shock (43°C). Excalibur showed better tolerance to heat stress than Kukri. Heat stress induced accumulation of EF-Tu and EF-1α in mature plants of both cultivars, but to a greater extent in Excalibur. Young plants did not show appreciable accumulation of EF-Tu in response to heat shock. However, these plants showed increased accumulation of EF-1α and the accumulation appeared greater in Excalibur than in Kukri. The results support the hypothesis that EF-Tu plays a role in heat tolerance in spring wheat. The results also suggest that EF-1α may be of importance to wheat response to heat stress.


2020 ◽  
Vol 80 (3) ◽  
pp. 433-443
Author(s):  
Carlos Fuentealba-Sandoval ◽  
Alberto Pedreros ◽  
Susana Fischer ◽  
María Dolores López

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 455
Author(s):  
Hafeez ur Rehman ◽  
Absaar Tariq ◽  
Imran Ashraf ◽  
Mukhtar Ahmed ◽  
Adele Muscolo ◽  
...  

Wheat crop experiences high temperature stress during flowering and grain-filling stages, which is termed as “terminal heat stress”. Characterizing genotypes for adaptive traits could increase their selection for better performance under terminal heat stress. The present study evaluated the morpho-physiological traits of two spring wheat cultivars (Millet-11, Punjab-11) and two advanced lines (V-07096, V-10110) exposed to terminal heat stress under late sowing. Early maturing Millet-11 was used as heat-tolerant control. Late sowing reduced spike length (13%), number of grains per spike (10%), 1000-grain weight (13%) and biological yield (15–20%) compared to timely sowing. Nonetheless, higher number of productive tillers per plant (19–20%) and grain yield (9%) were recorded under late sowing. Advanced lines and genotype Punjab-11 had delayed maturity and better agronomic performance than early maturing heat-tolerant Millet-11. Advanced lines expressed reduced canopy temperature during grain filling and high leaf chlorophyll a (20%) and b (71–125%) contents during anthesis under late sowing. All wheat genotypes expressed improved stem water-soluble carbohydrates under terminal heat stress that were highest for heat-tolerant Millet-11 genotype during anthesis. Improved grain yield was associated with the highest chlorophyll contents showing stay green characteristics with maintenance of high photosynthetic rates and cooler canopies under late sowing. The results revealed that advanced lines and Punjab-11 with heat adaptive traits could be promising source for further use in the selection of heat-tolerant wheat genotypes.


Sign in / Sign up

Export Citation Format

Share Document