grain number per spike
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 39)

H-INDEX

7
(FIVE YEARS 2)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009747
Author(s):  
Saarah Kuzay ◽  
Huiqiong Lin ◽  
Chengxia Li ◽  
Shisheng Chen ◽  
Daniel P. Woods ◽  
...  

Improving our understanding of the genes regulating grain yield can contribute to the development of more productive wheat varieties. Previously, a highly significant QTL affecting spikelet number per spike (SNS), grain number per spike (GNS) and grain yield was detected on chromosome arm 7AL in multiple genome-wide association studies. Using a high-resolution genetic map, we established that the A-genome homeolog of WHEAT ORTHOLOG OF APO1 (WAPO-A1) was a leading candidate gene for this QTL. Using mutants and transgenic plants, we demonstrate in this study that WAPO-A1 is the causal gene underpinning this QTL. Loss-of-function mutants wapo-A1 and wapo-B1 showed reduced SNS in tetraploid wheat, and the effect was exacerbated in wapo1 combining both mutations. By contrast, spikes of transgenic wheat plants carrying extra copies of WAPO-A1 driven by its native promoter had higher SNS, a more compact spike apical region and a smaller terminal spikelet than the wild type. Taken together, these results indicate that WAPO1 affects SNS by regulating the timing of terminal spikelet formation. Both transgenic and wapo1 mutant plants showed a wide range of floral abnormalities, indicating additional roles of WAPO1 on wheat floral development. Previously, we found three widespread haplotypes in the QTL region (H1, H2 and H3), each associated with particular WAPO-A1 alleles. Results from this and our previous study, show that the WAPO-A1 allele in the H1 haplotype (115-bp deletion in the promoter) is expressed at significantly lower levels in the developing spikes than the alleles in the H2 and H3 haplotypes, resulting in reduced SNS. Field experiments also showed that the H2 haplotype is associated with the strongest effects in increasing SNS and GNS (H2>H3>H1). The H2 haplotype is already present in most modern common wheat varieties but is rare in durum wheat, where it might be particularly useful to improve grain yield.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Jinpeng Zhang ◽  
Qifu Yao ◽  
Ruixin Li ◽  
Yuqing Lu ◽  
Shenghui Zhou ◽  
...  

The grain number per spike (GNPS) is an important yield component, and much attention is given to the increase in GNPS for current yield improvement of common wheat. Here, a panel of 259 pre-breeding lines and elite commercial varieties were collected for the investigation of 12 agronomic traits, especially for spike-related traits, with 2-year replicates. The high correlation between GNPS and kernel number per spikelet (KNS) suggested that the high GNPS trait in our pre-breeding lines was mainly controlled by grain set number per spikelet. Genome-wide association studies (GWAS) using the 660K SNP genotyping assay suggested that a major locus on chromosomes 4BS contributed to the high GNPS trait, which contributed to 33% and 48% of the variation in KNS and GNPS, respectively. A good diagnostic KASP marker AX-109286577 flanking the 4BS locus was developed for easy selection of the large spike trait. Taken together, the results suggested that untapped rare allele variation in our pre-breeding lines can be used for improvement of the yield component of set grain number per spike.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ling Qiao ◽  
Hanlin Li ◽  
Jie Wang ◽  
Jiajia Zhao ◽  
Xingwei Zheng ◽  
...  

Wheat founder parents have been important in the development of new wheat cultivars. Understanding the effects of specific genome regions on yield-related traits in founder variety derivatives can enable more efficient use of these genetic resources through molecular breeding. In this study, the genetic regions related to field grain number per spike (GNS) from the founder parent Linfen 5064 were analyzed using a doubled haploid (DH) population developed from a cross between Linfen 5064 and Nongda 3338. Quantitative trait loci (QTL) for five spike-related traits over nine experimental locations/years were identified, namely, total spikelet number per spike (TSS), base sterile spikelet number per spike (BSSS), top sterile spikelet number per spike (TSSS), fertile spikelet number per spike (FSS), and GNS. A total of 13 stable QTL explaining 3.91–19.51% of the phenotypic variation were found. The effect of six of these QTL, Qtss.saw-2B.1, Qtss.saw-2B.2, Qtss.saw-3B, Qfss.saw-2B.2, Qbsss.saw-5A.1, and Qgns.saw-1A, were verified by another DH population (Linfen 5064/Jinmai 47), which showed extreme significance (P < 0.05) in more than three environments. No homologs of reported grain number-related from grass species were found in the physical regions of Qtss.saw-2B.1 and Qtss.saw-3B, that indicating both of them are novel QTL, or possess novel-related genes. The positive alleles of Qtss.saw-2B.2 from Linfen 5064 have the larger effect on TSS (3.30%, 0.62) and have 66.89% in Chinese cultivars under long-term artificial selection. This study revealed three key regions for GNS in Linfen 5064 and provides insights into molecular marker-assisted breeding.


2021 ◽  
Author(s):  
Ming Yu ◽  
Xiaolong Wang ◽  
Hongwei Zhou ◽  
Yang Yu ◽  
Fan Wei ◽  
...  

Abstract Improvement of yield-traits is one of the predominating objectives in wheat breeding. Homeodomain-leucine zipper (HD-ZIP) transcription factor plays significant roles in plant growth and development. The TaHDZ34 (A, B and D sub-genomics) genes consisting of three members of the HD-ZIP IV transcription factor gene subfamily in wheat (Triticum aestivum L.) were cloned. Two haplotypes of TaHDZ34-7A, TaHDZ34-7B or TaHDZ34-7D were respectively identified after the sequence polymorphism analysis, and three functional molecular markers were developed. The TaHDZ34 genes were divided into eight haplotype combinations. Association analysis and distinct population validation jointly indicated that TaHDZ34 had the function of modulating grain number per spike, effective spikelet number per spike, 1,000 kernel weight, and flag leaf area per plant in wheat. Among all haplotype combinations of TaHDZ34, Hap-ABD was the most excellent one. Subcelluar localization showed that TaHDZ34-7A was localized in the nucleus. Interaction proteins of TaHDZ34-7A protein proved to be involved in protein synthesis/degradation, energy production and transportation, and photosynthesis processes. Geographic distribution and frequencies of TaHDZ34 haplotype combinations suggested that the Hap-Abd and Hap-AbD were preferential selection in Chinese wheat breeding programs. The high-yield related haplotype combinations Hap-ABD of TaHDZ34 provided beneficial genetic resources for marker-assisted selection of new wheat cultivars.


Author(s):  
Priscilla Glenn ◽  
Junli Zhang ◽  
Gina Brown-Guedira ◽  
Noah DeWitt ◽  
Jason P. Cook ◽  
...  

Abstract Key message We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Abstract Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.


2021 ◽  
Author(s):  
Qing Chen ◽  
Zhenru Guo ◽  
Xiaoli Shi ◽  
Meiqiao Wei ◽  
Yazhen Fan ◽  
...  

Abstract Grain yield (GY) and grain protein content (GPC) are important traits for wheat breeding and production; however, they are usually negatively correlated. The Q gene is the most important domestication gene in cultivated wheat because it influences many traits, including GY and GPC. Additionally, Qc1 is an overexpressed Q allele containing a missense mutation in the microRNA172-binding site. The common wheat (Triticum aestivum) mutant S-Cp1-1, which carries Qc1, has a very high GPC and some unfavorable characteristics, including dwarfism and compact spikes, which decrease the GY. We previously suggested that missense mutations in the sequences encoding the AP2 domains of Qc1 can be exploited to enhance the agronomic performance of wheat. In this study, we characterized two new Q alleles (Qs1 and Qc1-N8). Compared with the wild-type Q allele, Qs1 contains a missense mutation in the sequence encoding the first AP2 domain, whereas Qc1-N8 has two missense mutations, one in the sequence encoding the second AP2 domain and the other in the microRNA172-binding site. The Qs1 allele did not significantly affect the GPC or other processing quality parameters, but it adversely affected the GY by decreasing the thousand kernel weight and grain number per spike. In contrast, Qc1-N8 positively affected the GPC and GY by increasing the thousand kernel weight and grain number per spike, thereby reversing the unfavorable agronomic characteristics resulting from Qc1. Thus, we generated a novel germplasm relevant for wheat breeding. Furthermore, our findings provide new information useful for enhancing cereal crops via non-transgenic approaches.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dan-Dan Zhao ◽  
Hong-Yuan Ma ◽  
Lei Wang ◽  
Shao-Yang Li ◽  
Wen-Wen Qi ◽  
...  

The reproductive characteristics of plants are likely affected by climate change e.g., changes in precipitation patterns and nitrogen deposition, but few studies have examined the effects of these ecological agents of selection on the seed yield and germination characteristics of perennial grasses. Here, we conducted a multiple-year pot experiment with Leymus chinensis, a common perennial grass in the eastern region of the Eurasian steppe zone, which was grown under three water treatments with and without nitrogen addition. The seed yield of L. chinensis increased with precipitation and was highest (7.0 g/pot) under 747 mm of precipitation with nitrogen addition (10.5 g/m2). Seed yield was positively correlated with heading number, tiller number, and grain number per spike, and the heading number was a critical factor affecting seed yield. Seed germination percentage and the time to obtain 50% germination were affected by environmental cues experienced by the mother plants.


2021 ◽  
Vol 65 (1) ◽  
pp. 17-27
Author(s):  
Ensieh Es'haghi Shamsabadi ◽  
Hossein Sabouri ◽  
Habibollah Soughi ◽  
Seyed Javad Sajadi ◽  
Ahmad Reza Dadras

The present study was undertaken to analyze diallel data using GGE biplot model to gather information about genetic interrelationships among parents and identification of heterotic combinations for yield and yield components in bread wheat varieties. For this purpose, 8 bread wheat genotypes tested across in half-diallel crosses design, GGE biplot technique was used. Parents included the genotypes of Kouhdasht, Karim, Ehsan, Mehregan, N-92-9, Line 17, N80-19 and Atrak. The hybrids obtained from the one-way cross (28 hybrids) in agricultural years of 2016-17 were evaluated as randomized complete block design in two replications on the research farm of Gonbad Kavous University. The evaluated traits included the grain yield, weight of spike grains, number of grains in spike and number of spikes. Additive main effects and genotype × environment interaction (GGE) were employed in the evaluation of genotypes; analyses showed significant (P< 0.01) G × E, (genotype × environment interaction) with respect to plant seed yield. GGE biplot analysis showed that Karim was as the best general combiners for grain yield, number grain per spike and grain weight per spike, whereas Ehsan had the highest GCA effects for number of spikes. Ehsan and Karim had higher specific combining ability than other genotypes. The studied genotypes for this trait were divided into two heterotic groups where the first group included the genotypes of Kouhdasht, N-92-9, N80-19 and Atrak and the second group contained the genotypes of Line 17, Mehregan and Karim. Mehregan line had a weak combining ability with all testers and N-92-9 had also more power than others. Based on the biplot, the Karim genotype with high general adaptation was introduced as the ideal genotype in terms of grain yield, spike number, grain number per spike and grain weight, so the Karim genotype can be adapted to obtain high yield hybrids.


2021 ◽  
Author(s):  
Tao Li ◽  
Qiao Li ◽  
Jinhui Wang ◽  
Zhao Yang ◽  
Yanyan Tang ◽  
...  

Abstract Background: Yield-related traits including thousand grain weight (TGW), grain number per spike (GNS), grain width (GW), grain length (GL), plant height (PH), spike length (SL), and spikelet number per spike (SNS) are greatly associated with wheat (Triticum aestivum L.) grain yield. To detect quantitative trait loci (QTL) associated with them, 193 recombinant inbred lines derived from two elite winter wheat varieties Chuanmai42 and Chuanmai39 were employed to perform QTL mapping in six or eight environments. Results: A total of 30 QTLs on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 4A, 5A, 5B, 6A, 6D, 7A, 7B and 7D were identified. Among them, six major QTLs QTgw.cib-6A.1, QTgw.cib-6A.2, QGw.cib-6A, QGl.cib-3A, QGl.cib-6A, and QSl.cib-2D explaining 5.96-23.75% of the phenotypic variance were detected in multiple environments and showed strong and stable effects on corresponding traits. Three QTL clusters on chromosomes 2D and 6A containing 10 QTLs were also detected, which showed significant pleiotropic effects on multiple traits. Additionally, three Kompetitive Allele Specific PCR (KASP) markers linked to five of these major QTLs were developed. Candidate genes of QTgw.cib-6A.1/QGl.cib-6A and QGl.cib-3A were analyzed based on the spatiotemporal expression patterns, gene annotation, and orthologous search. Conclusions: Six major QTLs for TGW, GL, GW and SL were detected. Three KASP markers linked with five of these major QTLs were developed. These QTLs and KASP markers will be useful for elucidating the genetic architecture of grian yield and developing new wheat varieties with high and stable yield in wheat.


2021 ◽  
Author(s):  
Saarah Kuzay ◽  
Huiqiong Lin ◽  
Chengxia Li ◽  
Shisheng Chen ◽  
Daniel Woods ◽  
...  

Improving our understanding of the genes regulating grain yield can contribute to the development of more productive wheat varieties. Previously, a highly significant QTL affecting spikelet number per spike (SNS), grain number per spike (GNS) and grain yield was detected on chromosome arm 7AL in multiple genome-wide association studies. Using a high?resolution genetic map, we established that the A-genome homeolog of WHEAT ORTHOLOG OF APO1 ( WAPO-A1 ) was a leading candidate gene for this QTL. Using mutants and transgenic plants, we demonstrate in this study that WAPO-A1 is the causal gene underpinning this QTL. Loss-of-function mutants wapo-A1 and wapo-B1 showed reduced SNS in tetraploid wheat, and the effect was exacerbated in wapo1 combining both mutations. By contrast, spikes of transgenic wheat plants carrying extra copies of WAPO-A1 driven by its native promoter had higher SNS, a more compact spike apical region and a smaller terminal spikelet than the wild type. Taken together, these results indicate that WAPO1 affects SNS by regulating the timing of terminal spikelet formation. Both transgenic and wapo1 mutant plants showed a wide range of floral abnormalities, indicating additional roles of WAPO1 on wheat floral development. Previously, we found three widespread haplotypes in the QTL region (H1, H2 and H3), each associated with particular WAPO-A1 alleles. Integrating results from this study and previous findings, we show that the WAPO-A1 allele in the H1 haplotype (115-bp deletion in the promoter) is expressed at significantly lower levels in the developing spikes than the alleles in the H2 and H3 haplotypes, resulting in reduced SNS. Field experiments also showed that the H2 haplotype is associated with the strongest effects in increasing SNS and GNS (H2>H3>H1). The H2 haplotype is already present in most modern common wheats, so it might be particularly useful in durum wheat where H2 is rare.


Sign in / Sign up

Export Citation Format

Share Document