grain filling stage
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 73)

H-INDEX

17
(FIVE YEARS 5)

2022 ◽  
Vol 82 ◽  
Author(s):  
N. Hussain ◽  
A. Yasmeen ◽  
M. M. Yousaf ◽  
W. Malik ◽  
S. Naz ◽  
...  

Abstract Water stress is one of the major factor restricting the growth and development of chickpea plants by inducing various morphological and physiological changes. Therefore, the present research activity was designed to improve the chickpea productivity under water stress conditions by modulating antioxidant enzyme system. Experimental treatments comprised of two chickpea genotypes i.e. Bhakhar 2011 (drought tolerant) and DUSHT (drought sensitive), two water stress levels i.e. water stress at flowering stage and water stress at flowering + pod formation + grain filling stage including well watered (control) and three exogenous application of nutrients i.e. KCl 200 ppm, MgCl2, 50 ppm and CaCl2, 10 mM including distilled water (control). Results indicated that water stress at various growth stages adversely affects the growth, yield and quality attributes of both chickpea cultivars. Exogenous application of nutrients improved the growth, yield and antioxidant enzyme activities of both chickpea genotypes even under water stress conditions. However, superior results were obtained with foliar spray of potassium chloride on Bhakhar 2011 under well-watered conditions. Similarly, foliar spray of potassium chloride on chickpea cultivar Bhakhar 2011 cultivated under stress at flowering + pod formation + grain filling stage produced significantly higher contents of superoxide dismutase, peroxidase and catalase. These results suggests that the application of potassium chloride mitigates the adverse effects of water stress and enhanced tolerance in chickpea mainly due to higher antioxidant enzymes activity, demonstrating the protective measures of plant cells in stress conditions.


2022 ◽  
Vol 82 ◽  
Author(s):  
N. Hussain ◽  
A. Yasmeen ◽  
M. M. Yousaf

Abstract Water stress executes severe influences on the plant growth and development through modifying physio-chemical properties. Therefore, a field experiment was designed to evaluate the antioxidant status and their enhancements strategies for water stress tolerance in chickpea on loam and clay loam soils under agro-ecological conditions of Arid Zone Research Institute, Bahawalpur (29.3871 °N, 71.653 °E) and Cholistan farm near Derawer (28.19°N, 71.80°E) of Southern Punjab, Pakistan during winter 2014-15. Experimental treatments comprised of two chickpea cultivars i.e. Bhakhar 2011 (drought tolerant) and DUSHT (drought sensitive), two water stress levels i.e. water stress at flowering stage and water stress at flowering + pod formation + grain filling stage including well watered (control) and two exogenous application of osmoprotectants i.e. glycine betaine (GB) 20 ppm and proline 10 uM including distilled water (control). Results indicated that water stress at various growth stages adversely affects the growth, yield and quality attributes of both chickpea cultivars. Exogenous application of GB and proline improved the growth, yield and quality parameters of both chickpea cultivars even under water stress conditions. However, superior results were obtained with exogenously applied GB on Bhakhar 2011 under well-watered conditions. Similarly, foliar spray of GB on chickpea cultivar Bhakhar 2011 under stress at flowering + pod formation + grain filling stage produced maximum superoxide dismutase, peroxidase and catalase contents. These results suggested that application of GB mitigates the adverse effects of water stress and enhanced tolerance in chickpea mainly due to higher antioxidant enzymes activity, demonstrating the protective measures of plant cells in stress condition. Hence, antioxidants status might be a suitable method for illustrating water stress tolerance in chickpea.


2021 ◽  
Vol 50 (4) ◽  
pp. 1203-1207
Author(s):  
Keshav Mehra ◽  
Veer Sing

Effects of four different irrigation levels viz., One irrigation at 50 per cent flowering stage, one irrigation at grain filling/pod initiation stage, two irrigations (one at 50 per cent flowering + one at grain filling stage), control (without irrigation) on the incidence of gram pod borer, Helicoverpa armigera (Hubner) on chickpea were studied during Rabi, 2014-15 and 2015-16 at Research Farm, College of Agriculture, Bikaner (Rajasthan), India. Results revealed that the highest mean larval population (3.12 larvae per 5 plants) and maximum pod damage (33.24%) were recorded in the crop which was irrigated twice viz., one at 50 per cent flowering stage and second at grain filling stage. The lowest larval population (2.03 larvae per 5 plants) with minimum pod damage (8.34%) was recorded in the crop where irrigation was not given. The maximum seed yield (11.05 q/ha) was obtained from the crop which was irrigated two times and minimum seed yield (7.56 q/ha) was obtained in control. Bangladesh J. Bot. 50(4): 1203-1207, 2021 (December)


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Cong Zhang ◽  
Bangyou Zheng ◽  
Yong He

Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for yield formation of wheat (Triticum aestivum L.). Understanding and quantify the contribution of these traits to grain yield can provide a pathway towards increasing the yield potential of wheat. The objective of this study was to identify kernel weight gap for improving grain yield in 15 winter wheat genotypes grown in Shandong Province, China. A cluster analysis was conducted to classify the 15 wheat genotypes into high yielding (HY) and low yielding (LY) groups based on their performance in grain yield, harvest index, photosynthetic rate, kernels per square meter, and spikes per square meter from two years of field testing. While the grain yield was significantly higher in the HY group, its thousand kernel weight (TKW) was 8.8% lower than that of the LY group (p < 0.05). A structural equation model revealed that 83% of the total variation in grain yield for the HY group could be mainly explained by TKW, the flag leaf photosynthesis rate at the grain filling stage (Pn75), and flag leaf water-soluble carbohydrate content (WSC) at grain filling stage. Their effect values on yield were 0.579, 0.759, and 0.444, respectively. Our results suggest that increase of flag leaf photosynthesis and WSC could improve the TKW, and thus benefit for developing high yielding wheat cultivars.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0255896
Author(s):  
Chongyang Li ◽  
Mingyang Ma ◽  
Tianpeng Zhang ◽  
Pengwen Feng ◽  
Xiao Chen ◽  
...  

Wheat (Triticum aestivum L.) is one of the most important crops in the world, but the yield and quality of wheat are highly susceptible to heat stress, especially during the grain-filling stage. Therefore, it is crucial to select high-yield and high-temperature-resistant varieties for food cultivation. There is a positive correlation between the yield and photosynthetic rate of wheat during the entire grain-filling stage, but few studies have shown that lines with high photosynthetic rates can maintain higher thermotolerance at the same time. In this study, two pairs of wheat near isogenic lines (NILs) with different photosynthetic rates were used for all experiments. Our results indicated that under heat stress, lines with a high photosynthetic rate could maintain the activities of photosystem II (PSII) and key Calvin cycle enzymes in addition to their higher photosynthetic rates. The protein levels of D1 and HSP70 were significantly increased in the highly photosynthetic lines, which contributed to maintaining high photosynthetic rates and ensuring the stability of the Calvin cycle under heat stress. Furthermore, we found that lines with a high photosynthetic rate could maintain high antioxidant enzyme activity to scavenge reactive oxygen species (ROS) and reduce ROS accumulation better than lines with a low photosynthetic rate under high-temperature stress. These findings suggest that lines with high photosynthetic rates can maintain a higher photosynthetic rate despite heat stress and are more thermotolerant than lines with low photosynthetic rates.


2021 ◽  
Author(s):  
Sibo Chen ◽  
Shuangjie Chen ◽  
Yihui Jiang ◽  
Qing Lu ◽  
Zhongyuan Liu ◽  
...  

Abstract Ep type is an important morphological improvement (following dwarf breeding and ideal plant type) to adapt to super high yield breeding of rice, which shows a pleiotropic effect in increasing grain yield and nitrogen use efficiency (NUE) in rice. Nevertheless, it remains unclear whether Ep has adverse effects on eating quality and its regulatory of increasing nitrogen uptake and assimilation. In this study, we developed a pair of near-isogenic lines (NILs) of dep1 (NIL-Ep, NIL-Non Ep) in the Liaogeng 5 (LG5) and Akihikari (AKI) backgrounds. Here, we report that rice plants NIL-Ep have more grain numbers per panicle in middle to bottom spike positions than plants NIL-non Ep. This part of increased grain not only is the key factor to increase the yield, but also is the reason to reduce the eating quality. The content of prolamin and glutelin in the grain increased significantly, which resulted in higher hardness and worse viscosity of rice after cooking. Additionally, the activity of several essential enzymes catalyzing nitrogen metabolism is higher in the NIL-Ep line than in NIL-non Ep line, especially from the mid to late grain filling stage. Based on these results, we conclude that Ep positively regulates grain protein accumulation primarily through enhance the activity of enzyme enroll nitrogen assimilation and redistribution during the mid to late grain-filling stage, resulting in excessive accumulation of grain protein and decreased the quality of eating.


MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 205-222
Author(s):  
RAM NIWAS ◽  
M. L. KHICHAR

Wheat and mustard crop is highly vulnerable, particularly in the semi-arid and arid regions of India. The climate is warming through the processes such as CO2 and changed pattern of temperature and precipitation resulting in heat and drought stresses, respectively. The effect of increasing temperature during grain filling stage of wheat causes substantial reduction in grain yield. The effect of low temperature (frost) during podding and seed development stage in mustard causes freezing injury in seeds and sizable reduction in seed yield.  In this review paper response of wheat and mustard crop to weather extremes and management practices such as time of sowing, selection of resistance cultivars, mulching, seed priming, foliar spray of salts, use of extra irrigation water, foliar spray of micronutrients, sprinkler, wind barrier etc. to mitigate the temperature and moisture stress effect on the productivity of wheat and mustard crop  have been discussed. Above ground dry weight of wheat and its rate decreased with increasing water stress at each stage. The averaged values of damage threshold temperatures  compiled from the literature were 31 °C for flowering and 35 °C for grain filling of wheat. Changes in average daily maximum temperature during flowering and grain filling had a negative effect on grain yield of 518 kg/ha and 1140 kg/ha, respectively for every 1 degree increase in average maximum temperature in South Australia. Temperature rise would be most harmful for the crop in eastern region, followed by central and northern India, where winter season temperature is comparatively higher than northern region. Rainfed mustard was less vulnerable to temperature rise in northern India as compared to other two central and eastern India. Rise in atmospheric temperature reduced leaf area index, grain number as well as weight of grains which was in turn reflected in yield of mustard crop. Seed yield reduction occurred by low water availability during stem elongation, flowering and pod development in mustard. Priming with moringa water extract and ascorbate substantially improved the tissue water status, membrane stability, gas exchange, water productivity of the plant. Late sown wheat crop faces high temperature stress during ripening phase. Delayed sowing reduces the tillering period and hot weather during critical period of grain filling lead to forced maturity thereby reduces the grain yield. Application of mulches in wheat produced higher grain yield over without much wheat. Organic mulches provided better soil water status and improved plant canopy in terms of biomass, root growth, leaf area index and grain yield as compared to inorganic mulch. The foliar spray of KNO3 (0.5%) at 50 per cent flowering stage, 1.0 per cent KNO3 during anthesis stage, 2.5 mM of arginine, spray of zinc, extra irrigation water during grain filling stage increased the productivity of wheat under high temperature stress.  Light irrigation in mustard crop one day before frost occurrence protects from frost damage by improving heat transfer and heat capacity.  Plastic mulch raises the surface temperature of the soil nearly 10 °C over   bare soil.  Smoke particles are usually less than 1 µm in size, reflect visible radiation but trap the long wave radiation and so are effective in preventing rapid cooling of surface near ground. Mixing air and liquid materials in the right proportion to create many small bubbles is the secret to generate foam with low thermal conductivity. Organic mulches (straw and saw dust) provided better soil water status over ash mulch.  


2021 ◽  
Vol 225 ◽  
pp. 112722
Author(s):  
Chuang Ma ◽  
Pan Xie ◽  
Ke Zhang ◽  
Junxing Yang ◽  
Xuanzhen Li ◽  
...  

2021 ◽  
Vol 8 (03) ◽  
pp. 154-160
Author(s):  
Tran Loc Thuy ◽  
Tran Ngoc Thach ◽  
Tran Thi Thanh Xa ◽  
Chau Thanh Nha ◽  
Vo Thi Tra My ◽  
...  

Environmental stress trigger a variety of rice plant response, ranging from alters seed set, grain yield and grain quality during flowering and grain filling stage.  Efforts are required to improve our understanding of the impact of heat stress on rice production, which are essential strategies in rice cultivation. This article investigated the seed set, yield components and grain yield of Vietnamese rice cultivars (Indica germplasm) under high temperature environment during the flowering and grain filling stage. Six rice cultivars, including popular cultivars and new cultivars of Cuu Long Delta Rice Research Institute, and one popular extraneous cultivar with differences in maturing time, were grown in pots at high temperature (HT) and natural temperature condition as control (CT). All rice cultivars were subjected to the high temperature starting from the heading stage to the harvest maturity, applied by greenhouse effect. The greenhouse has about 25 cm window opening on 3 sides for air ventilation. The seed set rate of the heat-sensitive rice genotypes decreased significantly under HT, leading to a significant reduction in grain yield. The lowest seed set was recorded in “OM4900” (44.3%) and “OM18” (39.9%) under high temperature environment. The lower yield in all rice cultivars at an elevated temperature resulted in a dramatic decrease of filled grains and contributed to a loss of 1000-grain weight. ‘“OM892” is a potential rice cultivar for heat tolerant breeding program due to the seed set percentage was above 80% in both HT and CT conditions. High temperature during the grain filling stage resulted in a decreased amylose and increased chalkiness for all OM cultivars.


Sign in / Sign up

Export Citation Format

Share Document