scholarly journals Investigation of Phenol Removal by Proxy-Electrocoagulation Process with Iron Electrodes from Aqueous Solutions

2017 ◽  
Vol 2 (4) ◽  
pp. 212-219
Author(s):  
Ali Assadi ◽  
Sevda Naseri ◽  
Mehran Mohammadian Fazli ◽  
◽  
◽  
...  
2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Rabiatuladawiyah Danial ◽  
Luqman Chuah Abdullah ◽  
Mohsen Nourouzi Mobarekeh ◽  
Shafreeza Sobri ◽  
Nordayana Mohd Adnan

This study was intended to compare the performance of electrocoagulation process using aluminium and iron electrodes for glyphosate removal in aqueous solution. The effects of initial glyphosate concentration, electrocoagulation time and distance between electrodes, were discussed in detail. An electrocoagulation tank of 500mL with two metal plates electrodes, same in dimensions and metal types, was set up to perform batch mode laboratory experiment and the glyphosate in white powder was first diluted with deionized water. Production of metal cations showed an ability to neutralize negatively charged particles, which then encouraged to bind together to form aggregates of flocs composed of a combination of glyphosate and metal hydroxide. Compared with iron electrodes, aluminium electrodes were more effective for glyphosate removal, with a removal efficiency of over than 80%. This study revealed that electrocoagulation process using aluminium electrodes is reliable, especially designed for initial concentration 100 mg/L, electrocoagulation time 50 min, and distance between electrodes 6 cm. Finally, it can be concluded that electrocoagulation process using aluminium electrodes is efficient for glyphosate removal from aqueous environments.


2014 ◽  
Vol 202 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Khalil Abbassian ◽  
Ali Kargari ◽  
Tahereh Kaghazchi

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243540
Author(s):  
Samah Babiker Daffalla ◽  
Hilmi Mukhtar ◽  
Maizatul Shima Shaharun

Rice husk is a base adsorbent for pollutant removal. It is a cost-effective material and a renewable resource. This study provides the physicochemical characterization of chemically and thermally treated rice husk adsorbents for phenol removal from aqueous solutions. We revealed new functional groups on rice husk adsorbents by Fourier transform infrared spectroscopy, and observed major changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents using scanning electron microscopy. Additionally, we studied their surface area and pore size distribution, and found a greater enhancement of the morphological structure of the thermally treated rice husk compared with that chemically treated. Thermally treated adsorbents presented a higher surface area (24–201 m2.g-1) than those chemically treated (3.2 m2.g-1). The thermal and chemical modifications of rice husk resulted in phenol removal efficiencies of 36%–64% and 28%, respectively. Thus, we recommend using thermally treated rice husk as a promising adsorbent for phenol removal from aqueous solutions.


2015 ◽  
Vol 2 (2) ◽  
pp. 98-107
Author(s):  
Hossein Faraji ◽  
Simin Naseri ◽  
Abdoliman Amouei ◽  
Farzad Mohammadi ◽  
Hamidreza soُSoheilarezomand ◽  
...  

FLUIDA ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 65-72
Author(s):  
Rifki Ardiansyah ◽  
Triyoga Meiditama Putra ◽  
Dian Ratna Suminar ◽  
Agustinus Ngatin

ABSTRAK Salah satu upaya untuk menjaga persediaan air yaitu dengan cara menurunkan parameter air laut agar memenuhi parameter air tawar menggunakan metode elektrokoagulasi. Penelitian ini bertujuan untuk mempelajari pengaruh waktu proses elektrokoagulasi terhadap penurunan TDS, kekeruhan, kadar Cl, dan kadar Fe. Selain itu, untuk mengetahui perbandingan antara elektroda Al dan Fe. Air laut diambil dari Pantai Pelabuhan Ratu. Elektroda yang digunakan adalah Al dan Fe dengan ukuran 15x10 cm2. Tegangan yang digunakan yaitu 5 volt atau rapat arus sebesar 0,137 A/dm2 dengan waktu proses 15, 30, 45, dan 60 menit serta volume bahan bakunya 4 Liter. Penelitian dengan waktu proses 30 menit dan proses pengendapan selama satu hari mampu menurunkan kekeruhan hingga 2,28 NTU (55,07%); TDS hingga 1.010 mg/L (3,71%); kadar Cl hingga 271,98 mg/L (3,52%); dan kadar Fe 0,05 mg/L (40,65%). Proses elektrokoagulasi menggunakan elektroda aluminium lebih baik dibandingkan elektroda besi pada waktu proses 30 menit.   ABSTRACT One of the efforts to maintain water supply is by lowering seawater parameters to meet freshwater parameters using the electrocoagulation method. This study aims to study the effect of electrocoagulation process time on the decrease in TDS, turbidity, Cl content, and Fe content. In addition, to determine the comparison between Al and Fe electrodes. Seawater is taken from Pelabuhan Ratu Beach. The electrodes used are Al and Fe with a size of 15x10 cm2. The voltage used is 5 volts or a current density of 0,137 A/dm2 with processing times of 15, 30, 45, and 60 minutes and the volume of the raw material is 4 liters. Research with a processing time of 30 minutes and sedimentation for one day was able to reduce turbidity up to 2,28 NTU (55,07%); TDS up to 1.010 mg/L (3,71%); Cl content up to 271,98 mg/L (3,52%); and Fe content of 0,05 mg/L (40,65%). The electrocoagulation process using aluminum electrodes was better than iron electrodes at a processing time of 30 minutes.


2013 ◽  
Vol 15 (4) ◽  
pp. 494-503 ◽  

<p>The performance of a laboratory scale electrocoagulation system for the removal of Cr and Ni from model wastewater was studied systematically using iron and aluminum electrodes with an effective surface area of 13.8 cm2 and a distance of 4 cm. The influence of several parameters, such as initial concentration, electrode combination, current supply and initial pH was investigated during electrocoagulation process. The increase in initial concentration favored removal rate, did not affect nickel removal, but restricted chromium removal, thus indicating its required mechanism of reducing hexavalent ion to trivalent. The best removal efficiency, when metals existed separately in treated solutions, was accomplished with the use of iron electrodes for Cr (50%) and with aluminum electrodes for Ni (90%). When metals co-existed, iron electrodes achieved the best result, which was 76% for Cr and 82% for Ni, leaving 30 mg l-1 and 17 mg l-1 of residual concentrations, respectively, after 180 min of treatment. Solutions&rsquo; nominal pH appeared to be optimal, since increasing or decreasing their initial value did not benefit the electrocoagulation process. Chromium and nickel simultaneous removal was best achieved for conditions of 100 mg l-1 initial concentration, pH 5 and a current of 0.8 A.</p>


Sign in / Sign up

Export Citation Format

Share Document