scholarly journals In-Vitro Comparative Study of the Effect of Four Finishing and Polishing Tools on Surface Roughness of a Microhybrid Resin Composite

2019 ◽  
Vol 4 (2) ◽  
pp. 26-31 ◽  
Author(s):  
S Nemati Anaraki ◽  
H Kazemi ◽  
Z GHafari ◽  
Z Naser ◽  
T Bitaraf ◽  
...  
2017 ◽  
Vol 9 (2) ◽  
pp. 4-10
Author(s):  
Krishna Prasada L ◽  
Jyothsna S Jathanna ◽  
Naveen Kumar ◽  
Ramya M.K ◽  
Elizabeth Issac

BACKGROUND: To determine the effectiveness of three polishing systems on three different composite materials by evaluating surface roughness using a Profilometer and Scanning electron microscope. METHODOLOGY: A total of Sixty-three resin composite disks were prepared in rectangular acrylic mould of 8×2mm dimension, with 4mm thickness. Specimens were made of light activated resin composite Filtek Z-250-XT, Tetric-N-Ceram bulkfill, Ceram X Duo. The sixty-three samples were divided into three groups of twenty-one samples each i.e. Group A (Filtek Z-250-XT), Group B (TetricN-Ceram bulkfill) and Group C (Ceram-X-Duo).Out of 21 samples of each of the material, 7 specimens were polished with multi enhance polishing agents, 7 specimens were polished with super snap polishing agents and 7 specimens were polished with sof-lexdiscs.Surface roughness of each sample after polishingwasevaluatedusingProfilometer and Scanning electron microscope. RESULTS: One-way anova and kruskalwallis test was used for statistical analysis. Ceram-X-Duo gave least roughness average value with Super snap polishing system when compared to multi enhance and sof-lex polishing system. CONCLUSION: Super snap polishing system is a better polishing system than multi enhance and soflex and Ceram-X-Duo composite material offers better polishability compared to Filtek Z-250-XT and Tetric-N-Ceram bulk fill.


2019 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Jyothi Nagesh ◽  
Amith Setty ◽  
JayashankaraChatra Marigowda ◽  
Anilkumar Shivanna ◽  
SharathKumar Paluvary ◽  
...  

2020 ◽  
Vol 45 (5) ◽  
pp. 528-536
Author(s):  
N Rohr ◽  
N Bertschinger ◽  
J Fischer ◽  
A Filippi ◽  
NU Zitzmann

Clinical Relevance A well-polished cement surface increases the viability and spreading of gingival fibroblasts. The tested resin composite cements did not reveal any cytotoxic effects. SUMMARY Objective: This in vitro study aimed to investigate the effect of cement type and roughness on the viability and cell morphology of human gingival fibroblasts (HGF-1). Methods and Materials: Discs of three adhesive (Panavia V5 [PV5], Multilink Automix [MLA], RelyX Ultimate [RUL] and three self-adhesive (Panavia SA plus [PSA], SpeedCem plus [SCP], RelyX Unicem [RUN]) resin composite cements were prepared with three different roughnesses using silica paper grit P180, P400, or P2500. The cement specimens were characterized by surface roughness and energy-dispersive X-ray spectroscopic mapping. A viability assay was performed after 24 hours of incubation of HGF-1 cells on cement specimens. Cell morphology was examined with scanning electron microscopy. Results: The roughness of the specimens did not differ significantly among the different resin composite cements. Mean Ra values for the three surface treatments were 1.62 ± 0.34 μm for P180, 0.79 ± 0.20 μm for P400, and 0.17 ± 0.08 μm for P2500. HGF-1 viability was significantly influenced by the cement material and the specimens’ roughness, with the highest viability for PSA ≥ RUN = MLA ≥ SCP = PV5 > RUL (p<0.05) and for P2500 = P400 > P180 (p<0.001). Cell morphology did not vary among the materials but was affected by the surface roughness. Conclusion: The composition of resin composite cements significantly affects the cell viability of HGF-1. Smooth resin composite cement surfaces with an Ra of 0.2–0.8 μm accelerate flat cell spreading and formation of filopodia.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7280
Author(s):  
Mayumi Maesako ◽  
Takafumi Kishimoto ◽  
Shigetaka Tomoda ◽  
Taku Horie ◽  
Mitsuyoshi Yamada ◽  
...  

Resin composites employing structural coloration have recently been developed. These resins match to various tooth shades despite being a single paste. To accomplish this, the filler and base resin are tightly bonded, which is thought to provide excellent discoloration resistance. Here, we investigated the surface properties of one of these resins, including the discoloration of the repolished surface. We developed an innovative in vitro method to adjust the repolished surface, in which structural degradation is removed according to scanning electron microscopy (SEM) observation rather than by the naked eye. The resin samples (20 mm (length) × 10 mm (width) × 4 mm (depth)) were manufactured using this resin material. After accelerated aging of the resin by alkaline degradation, the resin was repolished and the discoloration (ΔE*ab), surface roughness (the arithmetic mean roughness (Ra)), and glossiness (the 60° specular) were measured. SEM observation showed that the appearance of the bond between the organic composite filler and base resin on the repolished surface was different from that on the mirror-polished surface. This revealed that according to our in vitro method it was difficult to make the repolished surface structurally identical to the mirror-polished surface. Among the properties of the repolished surface, the degree of discoloration did not change despite the rougher and less glossy surface. It can be concluded that the factors that induce discoloration in this resin composite are independent of the surface roughness and glossiness.


Sign in / Sign up

Export Citation Format

Share Document