scholarly journals Hypoglycemic and Hypolipidemic Effects of Myrtus communis, Trachyspermum copticum and Ferula gummosa Essential Oils on Streptozotocin Induced Diabetic Rats

2019 ◽  
Vol 6 (1) ◽  
pp. 1-8
Author(s):  
Saeedeh Karimlar ◽  
◽  
Asieh Naderi ◽  
Farzad Mohammadi ◽  
Maryam Moslehishad ◽  
...  
2013 ◽  
Vol 12 (1) ◽  
pp. 189 ◽  
Author(s):  
Hichem Sebai ◽  
Slimen Selmi ◽  
Kais Rtibi ◽  
Abdelaziz Souli ◽  
Najoua Gharbi ◽  
...  

2012 ◽  
Vol 90 (1) ◽  
pp. 219-235
Author(s):  
ABDEL-MENEM M. EISSA ◽  
SAEB A. HAFEZ ◽  
NAGLAA H. M. HASSANEN ◽  
ESRAA A. M. MOSA

2020 ◽  
Vol 15 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Jalil Kardan-Yamchi ◽  
Mohaddese Mahboubi ◽  
Hossein Kazemian ◽  
Gholamreza Hamzelou ◽  
Mohammad M. Feizabadi

Background: Microbial resistance to antibiotics and their adverse effects related to these antibiotics are a matter of global public health in the 21th century. The emergence of drug-resistant strains, has gained the interest of the scientists to discover new antimicrobial agents from the essential oil of medicinal plants. Methods: Anti-mycobacterial effects of Trachyspermum copticum and Pelargonium graveolens essential oils were determined against multi-drug resistant clinical strains of Mycobacterium tuberculosis, Mycobacterium kansasii, Mycobacterium fortuitum and standard strain of Mycobacterium tuberculosis H37Rv by a Broth micro-dilution method. Pelargonium graveolens plant named Narmada was discovered by Kulkarni R.N et al. (Patent ID, USPP12425P2) and a formulation comprising thymol obtained from Trachyspermum is useful in the treatment of drug-resistant bacterial infections (Patent ID, US6824795B2). The chemical composition of hydro-distilled essential oils was determined by GC and GC-MS. Results: Minimum Inhibitory Concentration (MIC) values for T. copticum essential oil against tested isolates were ranged from 19.5 µg/mL to 78 µg/mL. The least minimum inhibitory concentration of P. graveolens extract against M. Kansasii and MDR-TB was 78 µg/ml. Conclusion: The results of the present research introduced T. copticum and P. graveolens essential oils as a remarkable natural anti-mycobacterial agent, but more pharmacological studies are required to evaluate their efficacy in animal models.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1288
Author(s):  
Marianna Usai ◽  
Mauro Marchetti ◽  
Nicola Culeddu ◽  
Maurizio Mulas

A population of 52 genotypes of Myrtle (Myrtus communis L.), selected in the framework of a domestication program and growing in the same collection field at Oristano (Central Western Sardinia, 39°54′ N 8°35′ E), was analyzed by GC/MS for leaf essential oil composition. The chemical composition of essential oils was quite variable with a number of compounds ranging from 31 to 78 depending on cultivar. One hundred and eighteen compounds were globally identified in the various genotypes. However, α-pinene, limonene, 1,8-cineole, α-terpineol, and linalool always resulted as main components with few differences among samples. Minor compounds have been the determining factors in differentiating or associating genotypes in the outputs of a principal component analysis (PCA), where the results of another analysis of fruit essential oils of the same genotypes were also jointly used. Genotypes were discriminated according to mother plant characterization or ecological variables, such as site altitude, soil nature, and presence or absence of calcareous soils in the substrate of the localities of origin.


2016 ◽  
Vol 44 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Melih YILAR ◽  
Yusuf BAYAN ◽  
Abdurrahman ONARAN

The purpose of this study was to assess the effectiveness of essential plant oils from Vitex agnus-castus L. (VAC) and Myrtus communis L. against the plant pathogens, Fusarium oxysporum f. sp. radicis-lycopersici (Sacc.) W.C. Synder & H.N. Hans, Rhizoctonia solani J.G. Kühn., Sclerotinia sclerotiorum (Lib.) de Bary and Verticillium dahliae Kleb., and to determine the chemical composition of the compounds in these essential oils. GC/MS analysis was identified 25 different compounds in VAC essential oil, while the main compounds were determined as Eucalyptol (17.75%), β-Caryophyllene (13.21%) and Spathulenol (10.41%). On the other hand, the essential oil of M. communis, consisted of 16 different compounds which were Eucalyptol (49.15%), Myrtenol (19.49%) and α-Pinene (8.38%) being its main compounds. An assessment of antifungal activity was performed under in vitro conditions. Plant pathogens were inoculated onto Petri dishes (60 mm) containing PDA medium (10 mL/Petri-1), and plant essential oils were applied at concentrations of 0.5, 1, 1.5, 2, 5 and 10 (μL/Petri-1) into the 5 mm diameter wells opened on the Petri dish surface. After that, the Petri dishes incubated at 22±2 °C. The results of this study, the essential oil of M. communis, at a dose of 10 μL/ Petri, inhibited the 100% mycelium growth of V. dahliae, S. sclerotiorum and R. solani. The highest dose of VAC essential oil was also 100% inhibited V. dahliae and S. sclerotiorum. The LC50 and LC90 values of M. communis and VAC essential oil calculated for V. dahliae, FORL, S. sclerotiorum and R. solani. This plant extracts were shown by in vitro conditions to be potential antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document