scholarly journals Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats

2013 ◽  
Vol 12 (1) ◽  
pp. 189 ◽  
Author(s):  
Hichem Sebai ◽  
Slimen Selmi ◽  
Kais Rtibi ◽  
Abdelaziz Souli ◽  
Najoua Gharbi ◽  
...  
Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
NM De Gouveia ◽  
IB Moraes ◽  
RMF Sousa ◽  
MB Neto ◽  
AV Mundim ◽  
...  

2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


2020 ◽  
Vol 8 (3) ◽  
pp. 239-254 ◽  
Author(s):  
Reza Mahjub ◽  
Farzane K. Najafabadi ◽  
Narges Dehkhodaei ◽  
Nejat Kheiripour ◽  
Amir N. Ahmadabadi ◽  
...  

Background: Insulin, like most peptides, is classified as a hydrophilic and macromolecular drug that is considered as a low permeable and unstable compound in the gastrointestinal (GI) tract. The acidic condition of the stomach can degrade insulin molecules. Moreover, the presence of proteolytic activities of some enzymes such as trypsin and chymotrypsin can hydrolyze amide-bonds between various amino-acids in the structures of peptides and proteins. However, due to its simplicity and high patient compliance, oral administration is the most preferred route of systemic drug delivery, and for the development of an oral delivery system, some obstacles in oral administration of peptides and proteins including low permeability and low stability of the proteins in GI should be overcome. Objective: In this study, the effects of orally insulin nanoparticles (INPs) prepared from quaternerized N-aryl derivatives of chitosan on the biochemical factors of the liver in diabetic rats were studied. Methods: INPs composed of methylated (amino benzyl) chitosan were prepared by the PEC method. Lyophilized INPs were filled in pre-clinical capsules, and the capsules were enteric-coated with Eudragit L100. Twenty Male Wistar rats were randomly divided into four groups: group1: normal control rats, group 2: diabetic rats, group 3: diabetic rats received capsules INPs(30 U/kg/day, orally), group 4: the diabetic rats received regular insulin (5 U/kg/day, subcutaneously). At the end of the treatment, serum, liver and kidney tissues were collected. Biochemical parameters in serum were measured using spectrophotometric methods. Also, oxidative stress was measured in plasma, liver and kidney. Histological studies were performed using H and E staining . Results: Biochemical parameters, and liver and kidney injury markers in serum of the diabetic rats that received INPs improved significantly compared with the diabetic group. INPs reduced oxidative toxic stress biomarkers in serum, liver and kidney of the diabetic treated group. Furthermore, a histopathological change was developed in the treated groups. Conclusion: Capsulated INPs can prevent diabetic liver and oxidative kidney damages (similar regular insulin). Therefore oral administration of INPs appears to be safe. Lay Summary: Although oral route is the most preferred route of administration, but oral delivery of peptides and proteins is still a challenging issue. Diabetes Mellitus may lead to severe complications, which most of them are life-threatening. In this study, we are testing the toxicity of oral insulin nanoparticles in kidney and liver of rats. For this investigation, we will prepare insulin nanoparticles composed of a quaternized derivative of chitosan. The nanoparticles will be administered orally to rats and the level of oxidative stress in their liver and kidney will be determined. The data will be compared to the subcutaneous injection of insulin.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olubanke O. Ogunlana ◽  
Babatunde O. Adetuyi ◽  
Miracle Rotimi ◽  
lohor Esalomi ◽  
Alaba Adeyemi ◽  
...  

Abstract Background Diabetes, a global cause of mortality in developing countries is a chronic disorder affecting the metabolism of macromolecules and has been attributed to the defective production and action of insulin characterized by persistent hyperglycemic properties. This global disorder harms organs of the body such as the liver, kidney and spleen. Medicinal plants such as Hunteria umbellate have been shown to possess hypoglycemic, antioxidative and anti-diabetic properties owing to the high concentration of active phytochemical constituents like flavonoids and alkaloids. The present study seeks to evaluate the hypoglycemic activities of ethanolic seed extract of Hunteria umbellate on streptozotocin-induced diabetes rats. Methods Thirty (30) female experimental rats were randomly divided into five groups with six rats per group and were administered streptozotocin (STZ) and Hunteria umbellate as follows. Group 1 served as control and was given only distilled water, group 2 rats were administered 60 mg/kg STZ; Group 3 was administered 60 mg/kg STZ and 100 mg/kg metformin; group 4 rats were administered 60 mg/kg STZ and 800 mg/kg Hunteria umbellate, group 5 rats 60 mg/kg STZ and 400 mg/kg Hunteria umbellate. The fasting blood glucose level of each rat was measured before sacrifice. Rats were then sacrificed 24 h after the last dose of treatment. Results The results showed that Hunteria umbellate significantly reversed STZ-induced increase in fasting blood glucose and increase in body and organs weight of rats. Hunteria umbellate significantly reversed STZ-induced decrease in antioxidant enzyme in liver, kidney and spleen of rats. Hunteria umbellate significantly reversed STZ-induced increase in oxidative stress markers in liver, kidney and spleen of rats. Conclusion Collectively, our results provide convincing information that inhibition of oxidative stress and regulation of blood glucose level are major mechanisms through which Hunteria umbellate protects against streptozotocin-induced diabketes rats.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1332
Author(s):  
Gilda M. Iova ◽  
Horia Calniceanu ◽  
Adelina Popa ◽  
Camelia A. Szuhanek ◽  
Olivia Marcu ◽  
...  

Background: There is a growing interest in the correlation between antioxidants and periodontal disease. In this study, we aimed to investigate the effect of oxidative stress and the impact of two antioxidants, curcumin and rutin, respectively, in the etiopathology of experimentally induced periodontitis in diabetic rats. Methods: Fifty Wistar albino rats were randomly divided into five groups and were induced with diabetes mellitus and periodontitis: (1) (CONTROL)—control group, (2) (DPP)—experimentally induced diabetes mellitus and periodontitis, (3) (DPC)—experimentally induced diabetes mellitus and periodontitis treated with curcumin (C), (4) (DPR)—experimentally induced diabetes mellitus and periodontitis treated with rutin (R) and (5) (DPCR)—experimentally induced diabetes mellitus and periodontitis treated with C and R. We evaluated malondialdehyde (MDA) as a biomarker of oxidative stress and reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG and catalase (CAT) as biomarkers of the antioxidant capacity in blood harvested from the animals we tested. The MDA levels and CAT activities were also evaluated in the gingival tissue. Results: The control group effect was statistically significantly different from any other groups, regardless of whether or not the treatment was applied. There was also a significant difference between the untreated group and the three treatment groups for variables MDA, GSH, GSSG, GSH/GSSG and CAT. There was no significant difference in the mean effect for the MDA, GSH, GSSG, GSH/GSSG and CAT variables in the treated groups of rats with curcumin, rutin and the combination of curcumin and rutin. Conclusions: The oral administration of curcumin and rutin, single or combined, could reduce the oxidative stress and enhance the antioxidant status in hyperglycemic periodontitis rats.


Sign in / Sign up

Export Citation Format

Share Document