A Case Study of Group Creativity in Mathematical Modeling Activities: Focusing on Mathematical Representation and Model Derivation Activities

2019 ◽  
Vol 29 (2) ◽  
pp. 251-282
Author(s):  
Hye-Yun Jung ◽  
Kyeong-Hwa Lee
2013 ◽  
Vol 39 (1) ◽  
pp. 105-118
Author(s):  
Jacek Kurnatowski

Abstract Identification of coefficients determining flow resistance, in particular Manning’s roughness coefficients, is one of the possible inverse problems of mathematical modeling of flow distribution in looped river networks. The paper presents the solution of this problem for the lower Oder River network consisting of 78 branches connected by 62 nodes. Using results of six sets of flow measurements at particular network branches it was demonstrated that the application of iterative algorithm for roughness coefficients identification on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent from initial values of identified coefficients.


2001 ◽  
Vol 44 (2-3) ◽  
pp. 235-242 ◽  
Author(s):  
B. De heyder ◽  
P. Ockier ◽  
R. Jansen ◽  
R. Huiberts

Several process units at a wastewater treatment plant (WWTP) can produce a significant level of sound and thus induce sound nuisance for nearby residents. The risk for sound nuisance should be considered by making a prognosis of sound impact in an early project phase (planning, design). A prognosis requires information with respect to the sound characteristics of the different process units. This paper reports the development of empirical models for the sound power of relevant process units in the water line at Aquafin WWTPs. The used methodology for model derivation and validation allowed us to minimize the required number of measurements. Besides the methodology, the paper describes in detail the derivation and validation of the empirical model for the splashing water of screw pumps. Also the use of all the derived empirical models to determine the sound impact of a wastewater treatment plant at close distance is illustrated with a case-study.


Author(s):  
G G Davidson ◽  
A W Labib

This paper proposes a new concept of decision analysis based on a multiple criteria decision making (MCDM) process. This is achieved through the provision of a systematic and generic methodology for the implementation of design improvements based on experience of past failures. This is illustrated in the form of a case study identifying the changes made to Concorde after the 2000 accident. The proposed model uses the analytic hierarchy process (AHP) mathematical model as a backbone and integrates elements of a modified failure modes and effects analysis (FMEA). The AHP has proven to be an invaluable tool for decision support since it allows a fully documented and transparent decision to be made with full accountability. In addition, it facilitates the task of justifying improvement decisions. The paper is divided as follows: the first section presents an outline of the background to the Concorde accident and its history of related (non-catastrophic) malfunctions. The AHP methodology and its mathematical representation are then presented with the integrated FMEA applied to the Concorde accident. The case study arrives at the same conclusion as engineers working on Concorde after the accident: that the aircraft may fly again if the lining of the fuel tanks are modified.


2018 ◽  
Vol 221 ◽  
pp. 437-449 ◽  
Author(s):  
Shuangjun Li ◽  
Shuai Deng ◽  
Li Zhao ◽  
Ruikai Zhao ◽  
Meng Lin ◽  
...  

2020 ◽  
Vol 324 ◽  
pp. 108347
Author(s):  
Luis Almonte-Vega ◽  
Monica Colón-Vargas ◽  
Ligia Luna-Jarrín ◽  
Joel Martinez ◽  
Jordy Rodriguez-Rinc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document