scholarly journals Pérdidas ocasionadas por Zymoseptoria tritici en genotipos de trigo en ambientes de temporal

2020 ◽  
Vol 11 (3) ◽  
pp. 467-479
Author(s):  
María Elsa Rodríguez Contreras ◽  
Héctor Eduardo Villaseñor Mir ◽  
Julio Huerta Espino ◽  
Santos Gerardo Leyva Mir ◽  
Eliel Martínez Cruz ◽  
...  

El tizón foliar causado por Mycosphaerella graminicola (anamorfo Zymoseptoria tritici o Septoria tritici), es una enfermedad presente en áreas lluviosas de siembras de temporal de trigo en los Valles Altos del Centro de México. El efecto sobre el rendimiento de grano que causa la enfermedad es variable, dependiendo de la localidad y el nivel de resistencia de las variedades. Los objetivos de la investigación fueron determinar el porcentaje de pérdidas que causa el tizón foliar y la respuesta de variedades comerciales sembradas en ambientes de temporal. Se evaluaron cinco variedades de trigo harinero en dos tratamientos, con control y sin control de la enfermedad, en las localidades de Juchitepec, Estado de México y Nanacamilpa, Tlaxcala, durante los ciclos verano 2007 y 2008. El diseño experimental fue bloques completos al azar con cuatro repeticiones con arreglo de tratamientos de parcelas divididas. La disminución en el rendimiento que causo el tizón foliar fue del 41 y 40% en Salamanca S75 y Gálvez M87 respectivamente, 33% para Verano S91, Triunfo F2004 24% y 9% de pérdidas en Rebeca F2000. Con base al nivel de resistencia, se determinaron tres grupos de variedades: Rebeca F2000 resistente, Triunfo F2004 moderadamente resistente, Gálvez M87, Salamanca S75 y Verano S91 susceptibles. El mejor sitio de prueba fue Juchitepec, Estado de México. Los resultados indican que se debe de incorporar mayor resistencia a Zymoseptoria en futuras variedades incluyendo a Rebeca F2000 como fuente de resistencia, lo que permitirá disminuir pérdidas en rendimiento en ambientes donde la enfermedad es importante.

Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 789-794 ◽  
Author(s):  
M Razavi ◽  
G R Hughes

This study examined the genetic structure of a Saskatchewan population of Mycosphaerella graminicola, cause of the foliar disease Septoria tritici blotch of wheat. Such knowledge is valuable for understanding the evolutionary potential of this pathogen and for developing control strategies based on host resistance. Nine pairs of single-locus microsatellite primers were used to analyze the genomic DNA of 90 isolates of M. graminicola that were collected using a hierarchical sampling procedure from different locations, leaves, and lesions within a wheat field near Saskatoon. Allelic series at eight different loci were detected. The number of alleles per locus ranged from one to five with an average of three alleles per locus. Genetic diversity values ranged from 0.04 to 0.67. Partitioning the total genetic variability into within- and among-location components revealed that 88% of the genetic variability occurred within locations, i.e., within areas of 1 m2, but relatively little variability occurred among locations. Low variability among locations and a high degree of variability within locations would result if the primary source of inoculum was airborne ascospores, which would be dispersed uniformly within the field. This finding was confirmed by gametic disequilibrium analysis and suggests that the sexual reproduction of M. graminicola occurs in Saskatchewan.Key words: Mycosphaerella graminicola, SSR markers, sexual reproduction, genetic diversity.


2017 ◽  
Author(s):  
Graeme J. Kettles ◽  
Carlos Bayon ◽  
Caroline A. Sparks ◽  
Gail Canning ◽  
Kostya Kanyuka ◽  
...  

Abstract-The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Z. tritici secretes many functionally uncharacterised effector proteins during infection. Here we characterised a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern.-Transient expression systems were used to characterise Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi.-We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino acid N-terminal “loop” region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells but not to Z. tritici itself.-Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggests that whilst it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.


2019 ◽  
Vol 58 (1) ◽  
pp. 27-33
Author(s):  
S. Kildea ◽  
D.E. Bucar ◽  
F. Hutton ◽  
S. de la Rosa ◽  
T.E. Welch ◽  
...  

Abstract The emergence and spread of Quinone outside Inhibitor (QoI) fungicide resistance in the Irish Zymoseptoria tritici population in the early 2000s had immediate impacts on the efficacy of the entire group of fungicides for the control of septoria tritici blotch. As a result, a dramatic reduction in the quantities applied to winter wheat occurred in the following seasons. Even in the absence of these fungicides, the frequency of the resistance allele, G143A in the pathogens mtDNA has remained exceptionally high (>97%), and as such, it can be anticipated that continued poor efficacy of current QoI fungicides will be observed. Amongst the isolates with G143A, differences in sensitivity to the QoI pyraclostrobin were observed in vitro. The addition of the alternative oxidase (AOX) inhibitor salicylhydroxamic acid increased sensitivity in these isolates, suggesting some continued impairment of respiration by the QoI fungicides, albeit weak. Interestingly, amongst those tested, the strains from a site with a high frequency of inserts in the MFS1 transporter gene known to enhance QoI efflux did not exhibit this increase in sensitivity. A total of 19 mtDNA haplotypes were detected amongst the 2017 strain collection. Phylogenetic analysis confirmed the suggestion of a common ancestry of all the haplotypes, even though three of the haplotypes contained at least one sensitive strain.


Author(s):  
Tony Twamley ◽  
Mark Gaffney ◽  
Angela Feechan

AbstractFusarium graminearum and Zymoseptoria tritici cause economically important diseases of wheat. F. graminearum is one of the primary causal agents of Fusarium head blight (FHB) and Z. tritici is the causal agent of Septoria tritici blotch (STB). Alternative control methods are required in the face of fungicide resistance and EU legislation which seek to cut pesticide use by 2030. Both fungal pathogens have been described as either hemibiotrophs or necrotrophs. A microbial fermentation-based product (MFP) was previously demonstrated to control the biotrophic pathogen powdery mildew, on wheat. Here we investigated if MFP would be effective against the non-biotrophic fungal pathogens of wheat, F. graminearum and Z. tritici. We assessed the impact of MFP on fungal growth, disease control and also evaluated the individual constituent parts of MFP. Antifungal activity towards both pathogens was found in vitro but MFP only significantly decreased disease symptoms of FHB in planta. In addition, MFP was found to improve the grain number and weight, of uninfected and F. graminearum infected wheat heads.


2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


2019 ◽  
Author(s):  
Lydie Kerdraon ◽  
Matthieu Barret ◽  
Valérie Laval ◽  
Frédéric Suffert

AbstractBackgroundWheat residues are a crucial determinant of the epidemiology of Septoria tritici blotch, as they support the sexual reproduction of the causal agent Zymoseptoria tritici. We aimed to characterize the effect of infection with this fungal pathogen on the microbial communities present on wheat residues, and to identify microorganisms interacting with it. We used metabarcoding to characterize the microbiome associated with wheat residues placed outdoors, with and without preliminary Z. tritici inoculation, comparing a first set of residues in contact with the soil and a second set without contact with the soil, on four sampling dates in two consecutive years.ResultsThe diversity of the tested conditions, leading to the establishment of different microbial communities according to the origins of the constitutive taxa (plant only, or plant and soil), highlighted the effect of Z. tritici on the wheat residue microbiome. Several microorganisms were affected by Z. tritici infection, even after the disappearance of the pathogen. Linear discriminant analyses and ecological network analyses were combined to describe the communities affected by infection. The number of fungi and bacteria promoted or inhibited by inoculation with Z. tritici decreased over time, and was smaller for residues in contact with the soil. The interactions between the pathogen and other microorganisms appeared to be mostly indirect, despite the strong position of the pathogen as a keystone taxon in networks. Direct interactions with other members of the communities mostly involved fungi, including other wheat pathogens. Our results provide essential information about the alterations to the microbial community in wheat residues induced by the mere presence of a fungal pathogen, and vice versa. Species already described as beneficial or biocontrol agents were found to be affected by pathogen inoculation.ConclusionsThe strategy developed here can be viewed as a proof-of-concept focusing on crop residues as a particularly rich ecological compartment, with a high diversity of fungal and bacterial taxa originating from both the plant and soil compartments, and for Z. tritici-wheat as a model pathosystem. By revealing putative antagonistic interactions, this study paves the way for improving the biological control of residue-borne diseases.


2021 ◽  
pp. 303-356
Author(s):  
Harsh Raman ◽  

Septoria tritici blotch (STB), caused by the hemibiotrophic fungus Zymoseptoria tritici, is one of the most important foliar diseases of winter cereal crops. Recent advances are helping to understand the genetic basis and architecture of resistance to STB. To date, at least 22 genes for qualitative resistance and over 200 quantitative trait loci (QTL) for quantitative resistance have been identified in cereals. This knowledge is enabling cereal breeding programs to develop varieties with more durable resistance to STB. This chapter reviews recent research on genetic resistance loci and breeding strategies based on both conventional and biotechnology-based breeding approaches (molecular marker/genomic-assisted breeding, genetic transformation, and gene-editing) to achieve achieving durable resistance to STB infection and minimise grain yield losses.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 483-489 ◽  
Author(s):  
Laura E. Hayes ◽  
Kathryn E. Sackett ◽  
Nicole P. Anderson ◽  
Michael D. Flowers ◽  
Christopher C. Mundt

Plant pathogens pose a major challenge to maintaining food security in many parts of the world. Where major plant pathogens are fungal, fungicide resistance can often thwart regional control efforts. Zymoseptoria tritici, causal agent of Septoria tritici blotch, is a major fungal pathogen of wheat that has evolved resistance to chemical control products in four fungicide classes in Europe. Compared with Europe, however, fungicide use has been less and studies of fungicide resistance have been infrequent in North American Z. tritici populations. Here, we confirm first reports of Z. tritici fungicide resistance evolution in western Oregon through analysis of the effects of spray applications of propiconazole and an azoxystrobin + propiconazole mixture during a single growing season. Frequencies of strobilurin-resistant isolates, quantified as proportions of G143A mutants, were significantly higher in azoxystrobin-sprayed plots compared with plots with no azoxystrobin treatment at two different locations and were significantly higher in plots of a moderately resistant cultivar than in plots of a susceptible cultivar. Thus, it appears that western Oregon Z. tritici populations have the potential to evolve levels of strobilurin resistance similar to those observed in Europe. Although the concentration of propiconazole required to reduce pathogen growth by 50% values were numerically greater for isolates collected from plots receiving propiconazole than in control plots, this effect was not significant (P > 0.05).


Sign in / Sign up

Export Citation Format

Share Document