Molecular design and device engineering enable over 19% efficiencies in organic solar cells

Author(s):  
Jianhui Hou
2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


Author(s):  
Dorota Zając ◽  
Dariusz Przybylski ◽  
Jadwiga Sołoducho

AbstractDeveloping effective and low‐cost organic semiconductors is an opportunity for the development of organic solar cells (OPV). Herein, we report the molecular design, synthesis and characterization of two molecules with D–A–D–A configuration: 2-cyano-3-(5-(8-(3,4-ethylenodioxythiophen-5-yl)-2,3-diphenylquinoxalin-5-yl)thiophen-2-yl)acrylic acid (6) and 2-cyano-3-(5-(2,3-diphenyl-8-(thiophen-2-yl)quinoxalin-5-yl)thiophen-2-yl)acrylic acid (7). Moreover, we investigated the structural, theoretical and optical properties. The distribution of HOMO/LUMO orbitals and the values of the ionization potential indicate good semiconducting properties of the compounds and that they can be a bipolar material. Also, the optical study show good absorption in visible light (λabs 380–550 nm). We investigate the theoretical optoelectronic properties of obtained compounds as potential materials for solar cells.


2020 ◽  
Vol 21 (21) ◽  
pp. 8085
Author(s):  
Giacomo Forti ◽  
Andrea Nitti ◽  
Peshawa Osw ◽  
Gabriele Bianchi ◽  
Riccardo Po ◽  
...  

The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.


2018 ◽  
Vol 6 (16) ◽  
pp. 4457-4463 ◽  
Author(s):  
Jingyang Xiao ◽  
Ziming Chen ◽  
Guichuan Zhang ◽  
Qing-Ya Li ◽  
Qingwu Yin ◽  
...  

We have systematically investigated the synergistic effect of thermal annealing and interlayer modification on improving the performance of inverted non-fullerene organic solar cells.


2017 ◽  
Vol 10 (8) ◽  
pp. 1739-1745 ◽  
Author(s):  
Jiahui Wan ◽  
Xiaopeng Xu ◽  
Guangjun Zhang ◽  
Ying Li ◽  
Kui Feng ◽  
...  

Naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-based small molecules have been synthesized for organic solar cells. The optimized devices processed by a halogen-free solvent of CS2 exhibited a PCE of 11.53% with a small energy loss of 0.57 eV.


2020 ◽  
Vol 8 (10) ◽  
pp. 5315-5322 ◽  
Author(s):  
Yung-Jing Xue ◽  
Fong-Yi Cao ◽  
Po-Kai Huang ◽  
Yen-Chen Su ◽  
Yen-Ju Cheng

A TT-terminal ladder-type donor is generally a better molecular design than the corresponding T-terminal ladder-type isomer for the development of new A–D–A NFEAs.


Sign in / Sign up

Export Citation Format

Share Document