Printable Doped Polymer Semiconductors and Micro Thermoelectric Generators

Author(s):  
Mario Caironi
2020 ◽  
Vol 7 (4) ◽  
pp. 1073-1082 ◽  
Author(s):  
Mervin Chun-Yi Ang ◽  
Cindy Guanyu Tang ◽  
Qi-Mian Koh ◽  
Chao Zhao ◽  
Qiu-Jing Seah ◽  
...  

Self-compensated hole- and electron-doped polyelectrolytes can afford 0.1 eV tuning steps in work function of charge injection/collection layers through the tethered anions. These material systems are further immune to ‘dopant’ migration.


Nature ◽  
2016 ◽  
Vol 539 (7630) ◽  
pp. 536-540 ◽  
Author(s):  
Cindy G. Tang ◽  
Mervin C. Y. Ang ◽  
Kim-Kian Choo ◽  
Venu Keerthi ◽  
Jun-Kai Tan ◽  
...  

2020 ◽  
Vol 27 (7) ◽  
pp. 617-627
Author(s):  
Yuanyuan Tian ◽  
Mengjun Zhang ◽  
Junli Wang ◽  
Anbang Liu ◽  
Huaqing Xie ◽  
...  

2019 ◽  
Author(s):  
Micaela Matta ◽  
Alessandro Pezzella ◽  
Alessandro Troisi

<div><div><div><p>Eumelanins are a family of natural and synthetic pigments obtained by oxidative polymerization of their natural precursors: 5,6 dihydroxyindole and its 2-carboxy derivative (DHICA). The simultaneous presence of ionic and electronic charge carriers makes these pigments promising materials for applications in bioelectronics. In this computational study we build a structural model of DHICA melanin considering the interplay between its many degrees of freedom, then we examine the electronic structure of representative oligomers. We find that a non-vanishing dipole along the polymer chain sets this system apart from conventional polymer semiconductors, determining its electronic structure, reactivity toward oxidation and localization of the charge carriers. Our work sheds light on previously unnoticed features of DHICA melanin that not only fit well with its radical scavenging and photoprotective properties, but open new perspectives towards understanding and tuning charge transport in this class of materials.<br></p></div></div></div>


2001 ◽  
Vol 66 (8) ◽  
pp. 1208-1218 ◽  
Author(s):  
Guofeng Li ◽  
Mira Josowicz ◽  
Jiří Janata

Structural and electronic transitions in poly(thiophenyleneiminophenylene), usually referred to as poly(phenylenesulfidephenyleneamine) (PPSA) upon electrochemical doping with LiClO4 have been investigated. The unusual electrochemical behavior of PPSA indicates that the dopant anions are bound in two energetically different sites. In the so-called "binding site", the ClO4- anion is Coulombically attracted to the positively charged S or N sites on one chain and simultaneously hydrogen-bonded with the N-H group on a neighboring polymer chain. This strong interaction causes a re-organization of the polymer chains, resulting in the formation of a networked structure linked together by these ClO4- Coulombic/hydrogen bonding "bridges". However, in the "non-binding site", the ClO4- anion is very weakly bound, involves only the electrostatic interaction and can be reversibly exchanged when the doped polymer is reduced. In the repeated cycling, the continuous and alternating influx and expulsion of ClO4- ions serves as a self-organizing process for such networked structures, giving rise to a diminishing number of available "non-binding" sites. The occurrence of these ordered structures has a major impact on the electrochemical activity and the morphology of the doped polymer. Also due to stabilization of the dopant ions, the doped polymer can be kept in a stable and desirable oxidation state, thus both work function and conductivity of the polymer can be electrochemically controlled.


Sign in / Sign up

Export Citation Format

Share Document