scholarly journals Effect of Rolling and Annealing on Microstructure and Mechanical Properties of High Purity Aluminum

Author(s):  
Yang-Yang Lv ◽  
Ling-Feng Zhang ◽  
Guang-Xin Wang ◽  
Yi Xiong
2011 ◽  
Vol 462-463 ◽  
pp. 967-971
Author(s):  
Mahamad Noor Wahab ◽  
Mariyam Jameelah Ghazali ◽  
Abdul Razak Daud

Microstructure and mechanical properties of heat treated Al-Si alloy containing up to 10 wt% aluminum nitride (AlN) particles were investigate. In this work high purity AlN powder with different weight percentage of 0, 5, 7 and 10 were calculated as reinforced material to the metal matrix composites. The Al-Si matrix was prepared by a bottom pour stir casting technique. Heat treatment was performed by soaking and followed by an aged treatment. It was found that the AlN particles were scattered randomly distributed in the matrix composite. Ageing induced Si grain transformation into to spheroid shapes while Al dendrites tend to become finer. Ultimate tensile strength (UTS) had improved drastically from to 125MPa to 306MPa for un-aged Al-Si alloy and aged AlN 7 wt%. Fracture morphologies showed a pronounced feature with small dimples, tear ridges and micro neck particularly in the aged samples leading to a higher tensile value and increase in ductility. The presence of AlN particles in the alloys had improved the tensile strength by slowing down the plastic deformation during tensile test.


2005 ◽  
Vol 488-489 ◽  
pp. 151-154
Author(s):  
Weichao Zheng ◽  
Xiao Li Sun ◽  
Peijie Li ◽  
Daben Zeng ◽  
L.B. Ber

Effect of heat treatment on the microstructure and mechanical properties of high purity MA2-1(Mg-5wt.%Al-1wt.%Zn-0.4wt.%Mn) alloy sheet were investigated. X-ray diffraction analysis indicated that the microstructure of high purity MA2-1 alloy sheet annealed consisted of α-Mg solid solution, β (Mg17Al12) phase and Al-Mn phases such as Al6Mn and Al10Mn3. β phase dissolved into α-Mg solid solution during the solution treatment and formed supersaturated α-Mg solid solution. After aging at the temperatures of 423 K, 473 K and 523 K for 12 hours, β phase precipitated from the supersaturated α-Mg solid solution. Optical microscope observation found that the grain size of the MA2-1 alloy sheet became larger after heat treatment. As a result, the mechanical properties of the MA2-1 alloy sheet such as the tensile strength and yield strength declined after the heat treatment.


Author(s):  
Shuang Wang ◽  
Dao-gao Wu ◽  
Jia-min Zhong ◽  
De-hong Chen ◽  
Zong-an Li ◽  
...  

2020 ◽  
Vol 846 ◽  
pp. 93-98
Author(s):  
Sunisa Khamsuk ◽  
K. Choosakull ◽  
P. Wanwong

Porous high purity aluminum was fabricated using a powder metallurgy route combined with the space holder technique. The high purity aluminum powder was mixed with three different particle sizes and contents of the space holder material. The mixed powders were cold compacted at 400 MPa and sintered at 550 °C. The effects of space holder size on the microstructure and mechanical properties of porous high purity aluminum were systematically studied. Results revealed that the size and content of the space holder materials have a significant effect on the mechanical properties of porous aluminium. The compressive strength and hardness of the porous aluminum increased as the size and amount of the space holder material increased and decreased, respectively. The thickness of the cell wall increased with an increase particle size of the space holder material.


Sign in / Sign up

Export Citation Format

Share Document