scholarly journals Developing New Patterns for Local Weaving Using a Mathematical Algorithm

Author(s):  
Lawrence A. Eclarin ◽  
Ciriaco T. Ragual ◽  
Wilben Christie R. Pagtaconan ◽  
Lawrence John C. Tagata ◽  
Leonila Y. Rico
2007 ◽  
Vol 90 (5) ◽  
pp. 1346-1353 ◽  
Author(s):  
Diego L García-González ◽  
María Viera-Macías ◽  
Ramón Aparicio-Ruiz ◽  
Maria T Morales ◽  
Ramón Aparicio

Abstract The difference between theoretical and empirical triglyceride content is a powerful tool to detect the presence of any vegetable oil in olive oil. The current drawback of the method is the separation between equivalent carbon number ECN42 compounds, which affects the reliability of the method and, hence, its cutoff limit. The determination of the triglyceride profile by liquid chromatography using propionitrile as the mobile phase has recently been proposed to improve their quantification, together with a mathematical algorithm whose binary response determines the presence or absence of hazelnut oil. Twenty-one laboratories from 9 countries participated in an interlaboratory study to evaluate the performance characteristics of the whole analytical method. Participants analyzed 12 samples in duplicate, split into 3 intercomparison studies. Statistically significant differences due to the experimental conditions were found in some laboratories, which were detected as outliers by use of Cochran's and Grubbs' tests. The relative standard deviations (RSD) for repeatability and reproducibility were determined following the AOAC Guidelines for Collaborative Studies. The analytical properties of the method were determined by means of the sensitivity (0.86), selectivity (0.94), and reliability (72) for a cutoff limit of 8 (probability 94).


2013 ◽  
Vol 198 ◽  
pp. 633-638 ◽  
Author(s):  
Marek Płaczek

Work presents a proposal of an analysis method of the piezoelectric transducer. The considered system is a longitudinally vibrating single PZT plate. The main aim of this work is to designate characteristics of the considered PZT plate. Using constitutive equations of piezoelectric materials and an equation of the plates motion a matrix of characteristics of the system was obtained. Relations between mechanical and electrical parameters (forces, displacements, electric current and voltage) that describe behaviour of the system are included in the matrix of characteristics. A dynamic flexibility relation between the plates deformation and a force applied to the system is considered. A structural damping of the plates material was being taken into consideration and its influence on the plates dynamic flexibility is analysed. This work is an introduction to a task of analysis of complex systems. In future work the developed model and proposed mathematical algorithm will be used to analyse piezoelectric stacks. Non-classical methods will be used. It is a part of research works of Gliwice research centre related with an analysis and synthesis of mechanical and mechatronic systems [4-7,9,10,16-18]. Passive and active mechanical and mechatronic systems with piezoelectric transducers were analysed [1-3]. Works were also supported by computer-aided methods [8]. Both classical and non-classical methods were being considered. The discussed subject is important due to increasing number of applications of both simple and reverse piezoelectric phenomena in various modern technical devices.


1994 ◽  
Vol 05 (06) ◽  
pp. 1089-1101 ◽  
Author(s):  
LEVAN R. SURGULADZE

A short review of the present status of computer packages for the high order analytical perturbative calculations is presented. The mathematical algorithm and the quantum field theory methods used are briefly discussed. The most recent computer package HEPLoops for analytical computations in high energy physics up to four-loops is also discussed.


1997 ◽  
Vol 51 (8) ◽  
pp. 1106-1112 ◽  
Author(s):  
H. Weidner ◽  
R. E. Peale

A low-cost method of adding time-resolving capability to commercial Fourier transform spectrometers with a continuously scanning Michelson interferometer has been developed. This method is specifically designed to eliminate noise and artifacts caused by mirror-speed variations in the interferometer. The method exists of two parts: (1) a novel timing scheme for synchronizing the transient events under study and the digitizing of the interferogram and (2) a mathematical algorithm for extracting the spectral information from the recorded data. The novel timing scheme is a modification of the well-known interleaved, or stroboscopic, method. It achieves the same timing accuracy, signal-to-noise ratio, and freedom from artifacts as step-scan time-resolving Fourier spectrometers by locking the sampling of the interferogram to a stable time base rather than to the occurrences of the HeNe fringes. The necessary pathlength-difference information at which samples are taken is obtained from a record of the mirror speed. The resulting interferograms with uneven pathlength-difference spacings are transformed into wavenumber space by least-squares fits of periodic functions. Spectra from the far-infrared to the upper visible at resolutions up to 0.2 cm−1 are used to demonstrate the utility of this method.


2008 ◽  
Vol 132 (5) ◽  
pp. 829-837
Author(s):  
Andy N. D. Nguyen ◽  
Jitakshi De ◽  
Jacqueline Nguyen ◽  
Anthony Padula ◽  
Zhenhong Qu

Abstract Context.—In the diagnosis of lymphomas and leukemias, flow cytometry has been considered an essential addition to morphology and immunohistochemistry. The interpretation of immunophenotyping results by flow cytometry involves pattern recognition of different hematologic neoplasms that may have similar immunologic marker profiles. An important factor that creates difficulty in the interpretation process is the lack of consistency in marker expression for a particular neoplasm. For this reason, a definitive diagnostic pattern is usually not available for each specific neoplasm. Consequently, there is a need for decision support tools to assist pathology trainees in learning flow cytometric diagnosis of leukemia and lymphoma. Objective.—Development of a Web-enabled relational database integrated with decision-making tools for teaching flow cytometric diagnosis of hematologic neoplasms. Design.—This database has a knowledge base containing patterns of 44 markers for 37 hematologic neoplasms. We have obtained immunophenotyping data published in the scientific literature and incorporated them into a mathematical algorithm that is integrated to the database for differential diagnostic purposes. The algorithm takes into account the incidence of positive and negative expression of each marker for each disorder. Results.—Validation of this algorithm was performed using 92 clinical cases accumulated from 2 different medical centers. The database also incorporates the latest World Health Organization classification for hematologic neoplasms. Conclusions.—The algorithm developed in this database shows significant improvement in diagnostic accuracy over our previous database prototype. This Web-based database is proposed to be a useful public resource for teaching pathology trainees flow cytometric diagnosis.


2021 ◽  
Author(s):  
Danil Andreevich Nemushchenko ◽  
Pavel Vladimirovich Shpakov ◽  
Petr Valerievich Bybin ◽  
Kirill Viktorovich Ronzhin ◽  
Mikhail Vladimirovich Sviridov

Abstract The article describes the application of a new stochastic inversion of the deep-azimuthal resistivity data, independent from the tool vendor. The new model was performed on the data from several wells of the PAO «Novatek», that were drilled using deep-azimuthal resistivity tools of two service companies represented in the global oilfield services market. This technology allows to respond in a timely manner when the well approaches the boundaries with contrasting resistivity properties and to avoid exit to unproductive zones. Nowadays, the azimuthal resistivity data is the method with the highest penetration depth for the geosteering in real time. Stochastic inversion is a special mathematical algorithm based on the statistical Monte Carlo method to process the readings of resistivity while drilling in real time and provide a geoelectrical model for making informed decisions when placing horizontal and deviated wells. Until recently, there was no unified approach to calculate stochastic inversion, which allows to perform calculations for various tools. Deep-azimuthal resistivity logging tool vendors have developed their own approaches. This article presents a method for calculating stochastic inversion. This approach was never applied for this kind of azimuthal resistivity data. Additionally, it does not depend on the tool vendor, therefore, allows to compare the data from various tools using a single approach.


Author(s):  
M. Azeredo ◽  
◽  
V. Priimenko ◽  

This work presents a mathematical algorithm for modeling the propagation of poroelastic waves. We have shown how the classical Biot equations can be put into Ursin’s form in a plane-layered 3D porous medium. Using this form, we have derived explicit for- mulas that can be used as the basis of an efficient computational algorithm. To validate the algorithm, numerical simulations were performed using both the poroelastic and equivalent elastic models. The results obtained confirmed the proposed algorithm’s reliability, identify- ing the main wave events in both low-frequency and high-frequency regimes in the reservoir and laboratory scales, respectively. We have also illustrated the influence of some physical parameters on the attenuation and dispersion of the slow wave.


Sign in / Sign up

Export Citation Format

Share Document