scholarly journals Research on Random Vibration Control Algorithm Based-on EV Model

Author(s):  
Haoyang Yu ◽  
Guangfeng Guan ◽  
Chenlu Feng
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aly Mousaad Aly

This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR) damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.


Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1463-1470 ◽  
Author(s):  
Ronghui Zheng ◽  
Huaihai Chen ◽  
Min Qin ◽  
Andrea Angeli ◽  
Dirk Vandepitte

This article investigates the influence of low damping ratios on the performance of the multi-exciter stationary non-Gaussian random vibration control system. The basic theory of the multi-exciter stationary non-Gaussian random vibration method is reviewed first, and then the influences of low damping ratios on multi-output spectra and kurtoses are analyzed. The low damping ratios cause an ill-conditioned problem which will make the drive spectral matrix solution inaccurate; thus, some spectral lines located at resonance peaks in the response spectra cannot be modified within the preset tolerances by the control algorithms. The regularization method is used to alleviate the calculation error. The output kurtoses are dependent not only on the characteristics of the system but also on the input signals. It is found that the kurtosis control will be intractable if the damping ratios are very low. A two-input two-output cantilever beam simulation example is described to illustrate the analysis results.


2019 ◽  
Vol 24 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Miroslav Pawlenka ◽  
Miroslav Mahdal ◽  
Jiri Tuma ◽  
Adam Burecek

This study concerns the active vibration control of journal bearings, which are also known as sliding bearings. The control system contains a non-rotating loose bushing, the position of which is controlled by piezoelectric actuators. For governing the respective orthogonal direction of the journal motion, the control algorithm realizes a proportional controller in parallel with a bandpass filter of the IIR type. The bandpass filter is of the second order and its centre frequency is self-tuned to be the same as the whirl frequency that results from the instability of the bearing journal due to the oil film. The objective of active vibration control is to achieve the highest operational speed of the journal bearing at which the motion of the rotor is stable. The control algorithm for the active vibration control is implemented in Simulink and realized in a dSPACE control system.


Sign in / Sign up

Export Citation Format

Share Document