scholarly journals A Cloud Parameters Retrieval Algorithm in the Variational Assimilation System

Author(s):  
Qunbo Huang ◽  
Weimin Zhang ◽  
Yi Yu
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Haklim Choi ◽  
Xiong Liu ◽  
Gonzalo Gonzalez Abad ◽  
Jongjin Seo ◽  
Kwang-Mog Lee ◽  
...  

Clouds act as a major reflector that changes the amount of sunlight reflected to space. Change in radiance intensity due to the presence of clouds interrupts the retrieval of trace gas or aerosol properties from satellite data. In this paper, we developed a fast and robust algorithm, named the fast cloud retrieval algorithm, using a triplet of wavelengths (469, 477, and 485 nm) of the O2–O2 absorption band around 477 nm (CLDTO4) to derive the cloud information such as cloud top pressure (CTP) and cloud fraction (CF) for the Geostationary Environment Monitoring Spectrometer (GEMS). The novel algorithm is based on the fact that the difference in the optical path through which light passes with regard to the altitude of clouds causes a change in radiance due to the absorption of O2–O2 at the three selected wavelengths. To reduce the time required for algorithm calculations, the look-up table (LUT) method was applied. The LUT was pre-constructed for various conditions of geometry using Vectorized Linearized Discrete Ordinate Radiative Transfer (VLIDORT) to consider the polarization of the scattered light. The GEMS was launched in February 2020, but the observed data of GEMS have not yet been widely released. To evaluate the performance of the algorithm, the retrieved CTP and CF using observational data from the Global Ozone Monitoring Experiment-2 (GOME-2), which cover the spectral range of GEMS, were compared with the results of the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) algorithm, which is based on the O2 A-band. There was good agreement between the results, despite small discrepancies for low clouds.


2017 ◽  
Vol 10 (3) ◽  
pp. 759-782 ◽  
Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Huan Yu ◽  
Steffen Dörner ◽  
Andreas Hilboll ◽  
...  

Abstract. Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO satellite retrievals in situations with enhanced trace gas concentrations in the lower troposphere. Structural uncertainty arises when different retrieval methodologies are applied within the scientific community to the same satellite observations. Here, we address the issue of AMF structural uncertainty via a detailed comparison of AMF calculation methods that are structurally different between seven retrieval groups for measurements from the Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncertainty in every sub-step of the AMF calculation process. This goes beyond the algorithm uncertainty estimates provided in state-of-the-art retrievals, which address the theoretical propagation of uncertainties for one particular retrieval algorithm only. We find that top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK, McArtim, SCIATRAN and VLIDORT) agree within 1.5 %. We find that different retrieval groups agree well in the calculations of altitude resolved AMFs from different RTMs (to within 3 %), and in the tropospheric AMFs (to within 6 %) as long as identical ancillary data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud and aerosol correction procedures are being used. Structural uncertainty increases sharply when retrieval groups use their preference for ancillary data, cloud and aerosol correction. On average, we estimate the AMF structural uncertainty to be 42 % over polluted regions and 31 % over unpolluted regions, mostly driven by substantial differences in the a priori trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particular algorithm indicate that different cloud correction approaches result in substantial AMF differences in polluted conditions (5 to 40 % depending on cloud fraction and cloud pressure, and 11 % on average) even for low cloud fractions (<  0.2) and the choice of aerosol correction introduces an average uncertainty of 50 % for situations with high pollution and high aerosol loading. Our work shows that structural uncertainty in AMF calculations is significant and that it is mainly caused by the assumptions and choices made to represent the state of the atmosphere. In order to decide which approach and which ancillary data are best for AMF calculations, we call for well-designed validation exercises focusing on polluted conditions in which AMF structural uncertainty has the highest impact on NO2 and HCHO retrievals.


2009 ◽  
Vol 2 (2) ◽  
pp. 679-701 ◽  
Author(s):  
G. E. Thomas ◽  
C. A. Poulsen ◽  
A. M. Sayer ◽  
S. H. Marsh ◽  
S. M. Dean ◽  
...  

Abstract. The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.


2021 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Michel Van Roozendael ◽  
...  

&lt;p&gt;Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O2-O2) or O2A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving unresolved sub-pixel clouds, scattering of clouds in neighbouring pixels, and cloud shadow effects, such that 3D radiation scattering from unresolved boundary layer clouds may give significant biases in the trace gas retrievals. In order to quantify this impact, we use the MYSTIC 3D radiative transfer model to generate synthetic data. The realistic 3D cloud fields, needed for MYSTIC input, are generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The retrieval algorithm is applied to the synthetic data and comparison to the known input trace gas concentrations yields the retrieval error due to 3D cloud effects.&amp;#160;&lt;br&gt;In this study, we study NO2, which is a key tropospheric trace gas measured by TROPOMI and the future atmospheric Sentinels (S4 and S5). The work starts with a sensitivity study for the simulations with a simple 2D box cloud. The influence of cloud parameters (e.g., cloud top height, cloud optical thickness), observation geometry, and spatial resolution are studied, and the most significant dependences of retrieval biases are identified and investigated. Several approaches to correct the NO2 retrieval in the cloud shadow are explored and ultimately applied to both synthetic data with realistic 3D clouds and real observations.&lt;/p&gt;


2016 ◽  
Vol 9 (2) ◽  
pp. 359-382 ◽  
Author(s):  
J. Chimot ◽  
T. Vlemmix ◽  
J. P. Veefkind ◽  
J. F. de Haan ◽  
P. F. Levelt

Abstract. The Ozone Monitoring Instrument (OMI) has provided daily global measurements of tropospheric NO2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO – Derivation of OMI tropospheric NO2) product. Instead, the operational OMI O2 − O2 cloud retrieval algorithm is applied both to cloudy and to cloud-free scenes (i.e. clear sky) dominated by the presence of aerosols. This paper describes in detail the complex interplay between the spectral effects of aerosols in the satellite observation and the associated response of the OMI O2 − O2 cloud retrieval algorithm. Then, it evaluates the impact on the accuracy of the tropospheric NO2 retrievals through the computed Air Mass Factor (AMF) with a focus on cloud-free scenes. For that purpose, collocated OMI NO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua aerosol products are analysed over the strongly industrialized East China area. In addition, aerosol effects on the tropospheric NO2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT primarily represents the shielding effects of the O2 − O2 column located below the aerosol layers. The study cases show that the aerosol correction based on the implemented OMI cloud model results in biases between −20 and −40 % for the DOMINO tropospheric NO2 product in cases of high aerosol pollution (AOT  ≥ 0.6) at elevated altitude. These biases result from a combination of the cloud model error, used in the presence of aerosols, and the limitations of the current OMI cloud Look-Up-Table (LUT). A new LUT with a higher sampling must be designed to remove the complex behaviour between these biases and AOT. In contrast, when aerosols are relatively close to the surface or mixed with NO2, aerosol correction based on the cloud model results in an overestimation of the DOMINO tropospheric NO2 column, between 10 and 20 %. These numbers are in line with comparison studies between ground-based and OMI tropospheric NO2 measurements in the presence of high aerosol pollution and particles located at higher altitudes. This highlights the need to implement an improved aerosol correction in the computation of tropospheric NO2 AMFs.


2008 ◽  
Vol 53 (22) ◽  
pp. 3465-3469 ◽  
Author(s):  
GuoFu Zhu ◽  
JiShan Xue ◽  
Hua Zhang ◽  
ZhiQuan Liu ◽  
ShiYu Zhuang ◽  
...  

2011 ◽  
Vol 4 (4) ◽  
pp. 683-704 ◽  
Author(s):  
J. Hurley ◽  
A. Dudhia ◽  
R. G. Grainger

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT has the potential to be particularly useful for studying high, thin clouds, which have been difficult to observe in the past. This paper details the development, implementation and testing of an optimal-estimation-type retrieval for three macrophysical cloud parameters (cloud top height, cloud top temperature and cloud extinction coefficient) from infrared spectra measured by MIPAS. A preliminary estimation of a parameterisation of the optical and geometrical filling of the measurement field-of-view by cloud is employed as the first step of the retrieval process to improve the choice of a priori for the macrophysical parameters themselves. Preliminary application to single-scattering simulations indicates that the retrieval error stemming from uncertainties introduced by noise and by a priori variances in the retrieval process itself is small – although it should be noted that these retrieval errors do not include the significant errors stemming from the assumption of homogeneity and the non-scattering nature of the forward model. Such errors are preliminarily and qualitatively assessed here, and are likely to be the dominant error sources. The retrieval converges for 99% of input cases, although sometimes fails to converge for vetically-thin (<1 km) clouds. The retrieval algorithm is applied to MIPAS data; the results of which are qualitatively compared with CALIPSO cloud top heights and PARASOL cloud opacities. From comparison with CALIPSO cloud products, it must be noted that the cloud detection method used in this algorithm appears to potentially misdetect stratospheric aerosol layers as cloud. This algorithm has been adopted by the European Space Agency's "MIPclouds" project.


2008 ◽  
Vol 8 (3) ◽  
pp. 9697-9729 ◽  
Author(s):  
P. Wang ◽  
P. Stammes ◽  
R. van der A ◽  
G. Pinardi ◽  
M. van Roozendael

Abstract. The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds shows that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column densities (VCD) is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1) are lower than the tropospheric NO2 VCDs which used FRESCO cloud parameters (v1.04), in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about −2.12×1014 molec cm−2.


Sign in / Sign up

Export Citation Format

Share Document