scholarly journals Integrating Solid Cutting Simulation And Error Verification For Surface Machining Application

Author(s):  
Yu Cheng Hsin ◽  
Peng Tsai Jo ◽  
Chou Kao Yung
2020 ◽  
Vol 8 (1) ◽  
pp. 486-495
Author(s):  
Peerapong Kasuriya ◽  
Takeshi Watanabe ◽  
Takashi Goto ◽  
Masahiko Jin

2010 ◽  
Vol 443 ◽  
pp. 330-335 ◽  
Author(s):  
Yu Han Wang ◽  
Jing Chun Feng ◽  
Sun Chao ◽  
Ming Chen

In order to exploit the advantages of five-axis flank milling method for space free surface machining to the full, a definition of non-equidistant dual-NURBS tool path is presented first. On this basis, the constraint of velocity of points on the tool axis and the constraint of scanning area of the tool axis are deduced. Considering both of these constraints, an adaptive feed five-axis dual-NURBS interpolation algorithm is proposed. The simulation results show that the feedrate with the proposed algorithm satisfies both of the constraints and the machining time is reduced by 38.3% in comparison with the constant feed interpolator algorithm.


Author(s):  
Keigo Takasugi ◽  
Katsuhiro Nakagaki ◽  
Yoshitaka Morimoto ◽  
Yoshiyuki Kaneko

This study developed a method called non-axisymmetric curved surface turning (NACS-Turning) for a CNC lathe composed of a turning axis and two translation axes. The NACS-Turning method controls the three axes synchronously. This new machining method can reduce the lead time for non-circular shapes such as cam profiles or pistons for internal combustion engines. In our previous report, we presented an outline of a machining principle and a CAM system for NACS-Turning. However, at the same time, we found the problem that the X-axis slide exceeds the allowable acceleration. Therefore, it is preferable that the acceleration is verified during the cam application, and the tool path is generated within the allowable acceleration range. Therefore, this paper first describes the determination method of machinable conditions for NACS-Turning in the cam application. Next, based on the result, relationships between the acceleration of the X-axis slide and machining conditions are clarified. Finally, the experimental procedure showed that our proposed method does not exceed the allowable acceleration of the X-axis slide.


1992 ◽  
Vol 19 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G.W. Vickers ◽  
C. Bradley

Author(s):  
Aditya Das ◽  
Rakesh Murthy

One of the major challenges in commercializable micro-nano systems development is the high cost and turnaround that are incurred through multiple product-optimization iterations and expensive fabrication processes for specific systems. Development of complex and heterogeneous micro-nano systems, that are only possible through assembly and not by conventional surface machining approaches, are further impeded by lack of standard design rules and off-the-shelf robotic manipulation systems. Dedicated hardware and system specific component designs, although possible, are not commercially viable for addressing the wide range of opportunities that exists in the prevailing micro-nano domain. In this paper, we present an alternative and holistic top-down approach for micro-nano manufacturing using modular part designs and flexible assembly systems. We incorporate, seamlessly, multiple novel algorithms related to microrobotics and scaling of physics, obtained both analytically as well as experimentally; in order to predict, track and control the uncertainty propagation in a typical manufacturing process, in micro-nano scale, throughout production steps including design, machining, setup, assembly, testing etc. We demonstrate, through multiple examples, the implementation of the proposed framework in micro-nano scale manufacturing.


2016 ◽  
Vol 47 (11) ◽  
pp. 5302-5312 ◽  
Author(s):  
František Šebek ◽  
Petr Kubík ◽  
Jindřich Petruška ◽  
Jiří Hůlka

2005 ◽  
Vol 127 (4) ◽  
pp. 819-828 ◽  
Author(s):  
Stephen P. Radzevich

The paper is targeting on the finishing of precision gears for low-noise/noiseless transmission for cars and light trucks. Transmission error is the predominant cause of gear noise. The application of a topologically modified pinion results in reduction of transmission error up to two times. The required modification of the pinion tooth surface is provided on a plunge shaving operation with application of a shaving cutter of an appropriate design. A novel approach for computation of parameters of a form grinding wheel for grinding of the shaving cutter for plunge shaving of a precision involute pinion with topologically modified tooth surface is reported in the paper. The developed approach for computation of parameters of the form grinding wheel is focused on application of the shaving cutter grinder with a lack of CNC articulation. The problem under consideration is solved using the DG/K-based approach of part surface machining earlier developed by the author. (The DG/K-approach is based on fundamental results obtained in differential geometry of surfaces, and in kinematics of multi-parametric motion of a rigid body in E3 space (See Radzevich, S.P., Sculptured Surface Machining on Multi-Axis CNC Machine. Monograph, 1991, Vishcha Shkola Publishers, Kiev (in Russian). See also Radzevich, S.P., 2001, Fundamentals of Surface Machining. Monograph, Rastan, Kiev (in Russian).) An analytical solution to the problem is discussed in the paper. The solution has been used for developing software for the Mitsubishi ZA30CNC shaving cutter grinder for the needs of the automotive industry. Computer simulation reveals high accuracy of the ground shaving cutter.


Sign in / Sign up

Export Citation Format

Share Document