scholarly journals Effects of Aloe vera Cream On Skin Wound Healing In Sprague Dawley Rats: The Role of CD4+ And CD8+ Lymphocytes

Author(s):  
Yos Adi Prakoso ◽  
Kurniasih Kurniasih
2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Yos Adi Prakoso ◽  
Kurniasih

The aim of this study is to explore the effect of topical application of Aloe vera on skin wound healing. Thirty-six male Sprague-Dawley rats weighing 150–200 grams were divided into four groups. All groups were anesthetized, shaved, and exposed to round full-thickness punch biopsy on the back: group I (control); group II (treated with 1% Aloe vera cream); group III (treated with 2% Aloe vera cream); and group IV (treated with madecassol®). The treatments were given once a day. Macroscopic and microscopic examination were observed at 5, 10, and 15 days after skin biopsy. Skin specimens were prepared for histopathological study using H&E stain and IHC stain against CD4+ and CD8+ lymphocytes. All the data were analyzed using SPSS16. The result showed that topical application of 1% and 2% Aloe vera cream significantly reduced the percentage of the wound, leucocytes infiltration, angiogenesis, and expression of CD8+ lymphocytes and increased the epidermal thickness and the expression of CD4+ lymphocytes (p ≤ 0,05). There was no significant difference in the number of fibroblasts in all groups. Topical application of 1% and 2% Aloe vera cream has wound healing potential via their ability to increase the ratio of CD4+/CD8+ lymphocytes in the wound area.


2019 ◽  
Vol 7 ◽  
Author(s):  
Peng Hu ◽  
Qinxin Yang ◽  
Qi Wang ◽  
Chenshuo Shi ◽  
Dali Wang ◽  
...  

Abstact Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.


2014 ◽  
Vol 3 (4) ◽  
pp. 304-314 ◽  
Author(s):  
Michael Sung-Min Hu ◽  
Robert C. Rennert ◽  
Adrian McArdle ◽  
Michael T. Chung ◽  
Graham G. Walmsley ◽  
...  

2017 ◽  
Vol 49 (5) ◽  
pp. e334-e334 ◽  
Author(s):  
Harlan Barker ◽  
Marleena Aaltonen ◽  
Peiwen Pan ◽  
Maria Vähätupa ◽  
Pirkka Kaipiainen ◽  
...  

2020 ◽  
Vol 133 (18) ◽  
pp. 2236-2238
Author(s):  
Shi-Lu Yin ◽  
Ze-Lian Qin ◽  
Xin Yang

Author(s):  
Jiaheng Liang ◽  
Longlong Cui ◽  
Jiankang Li ◽  
Shuaimeng Guan ◽  
Kun Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yos Adi Prakoso ◽  
Chylen Setiyo Rini ◽  
Roeswandono Wirjaatmadja

The tropical area has a lot of herbal medicines such as Aloe vera (AV), Ananas comosus (AC), and Sansevieria masoniana (SM). All the three have a unique potential effect as an antibacterial and wound-healing promoter. The aim of this study is to explore the role of AV, AC, and SM on the skin wound infected with methicillin-resistant Staphylococcus aureus (MRSA). Forty-five adult female Sprague Dawley rats weighing 250–300 grams were divided into 5 groups. All the groups were exposed to two round full-thickness punch biopsy and infected with MRSA. The group C was the control group/untreated; group BC was treated with base cream/without extract; group AV was treated with 75% AV cream; group AC was treated with 75% AC cream, and group SM was treated with 75% SM cream. The wounds were observed on days 5, 10, and 15. The healing of skin wounds was measured by a percentage of closure, skin tensile strength, and histopathology. The result showed that AV, AC, and SM have a similar potential effect on healing in the wound that was infected with MRSA compared to the groups C and BC (P<0.05). It shows that all the three herbal formulations can be used as the alternative therapy to the wound infected with MRSA.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1377
Author(s):  
Oriana Simonetti ◽  
Giulio Rizzetto ◽  
Giulia Radi ◽  
Elisa Molinelli ◽  
Oscar Cirioni ◽  
...  

Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.


2019 ◽  
Vol 16 (1) ◽  
pp. 18-26
Author(s):  
Mardin O. Mohammed ◽  
Osman J. Ali ◽  
Sozan A. Muhamad ◽  
Salam H. Ibrahim ◽  
Goran M. Raouf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document