scholarly journals Numerical Study of the Mechanical Behavior of Polyamide 66 Reinforced by Argan Nut Shell Particles with the Finite Element Method and the Mori-Tanaka Model

1984 ◽  
Vol 106 (1) ◽  
pp. 130-136 ◽  
Author(s):  
W. T. Asbill ◽  
P. D. Pattillo ◽  
W. M. Rogers

The purpose of this investigation was to gain a better understanding into the mechanical behavior of the API 8 Round casing connection, when subjected to service loads of assembly interference, tension and internal pressure. The connection must provide both structural and sealing functions and these functions were evaluated by several methods. Part I discusses the methods of analysis, which include hand calculations using strength of materials, finite element method via unthreaded and threaded models, and experimental analysis using strain gages. Comparisons of all three methods are made for stresses and show that the finite element method accurately models connection behavior.


1994 ◽  
Vol 116 (4) ◽  
pp. 698-704 ◽  
Author(s):  
D. Bonneau ◽  
J. Absi

A numerical study of gas herringbone grooved journal bearings is presented for small number of grooves. The compressible Reynolds equation is solved by use of the Finite Element Method. The nonlinearity of the discretized equations is treated with the Newton-Raphson procedure. A comparison of the results for a smooth bearing with previously published results is made and the domain of validity of the Narrow Groove Theory is analyzed. Load capacity, attitude angle, and stiffness coefficients are given for various configurations: groove angle and thickness of grooves, bearing number, and that for both smooth and grooved member rotating.


2017 ◽  
Vol 20 (K2) ◽  
pp. 141-147
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Analysis of mechanical behavior of a structure containing defects such as holes and inclusions is essential in many engineering applications. In many structures, the discontinuities may have a significant influence on the reduction of the structural stiffness. In this work, we consider the effect of multiple random holes and inclusions in functionally graded material (FGM) plate and apply the extended finite element method with enrichment functions to simulate the mechanical behavior of those discontinuous interfaces. The inclusions also have FGM properties. Numerical examples are considered and their obtained results are compared with the COMSOL, the finite element method software.


Author(s):  
Sanjeev Kumar Singh ◽  
Saroja Kanta Panda

In this paper, a micromechanics method is developed to evaluate effective coefficients of piezoelectric fiber-reinforced composites. An exact solution is derived for effective elastic, piezoelectric and dielectric coefficients of such piezocomposites subjected to the applied load in the direction transverse to the fiber orientation. Simultaneously, based on finite element method, a numerical study is performed on a representative volume element of such piezo composite containing fiber in square packing arrangement. The finite element method provides a numerical solution to evaluate effective elastic, piezoelectric and dielectric coefficients for discrete volume fraction of fiber, the range being 0.1–0.6 for this study. The results are interpolated to understand the overall behavior of such piezocomposites. The results obtained from the micromechanics method and the finite element method are compared with the results obtained from other models based on strength of materials method given in the literature. It is observed that the method developed in this study provides better results for effective coefficients susceptible to fiber packing arrangements.


2016 ◽  
Vol 47 (3) ◽  
pp. 377-389 ◽  
Author(s):  
Sayyed Behzad Abdellahi ◽  
Elham Naghashzargar ◽  
Dariush Semnani

Finite element method can provide valuable results and information to evaluate and assess the mechanical behavior of tissue engineered scaffolds. In this investigation, a structurally and analytically based model is applied to analyze and to describe the mechanical properties of wire rope yarns as scaffold or other applications in textile engineering. In order to modeling the mechanical behavior of single yarn, non-linear hyperfoam model with three strain energy potential has been used. The results of finite element model are compared with an experimental approach and showed good agreement between software and experimental analysis with a maximum error at break of about 4.3%. As a result, validation of the finite element method is guaranteed for analysis of other structure of multi twisted yarn or wire ropes.


2002 ◽  
Vol 35 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Francesco Migliavacca ◽  
Lorenza Petrini ◽  
Maurizio Colombo ◽  
Ferdinando Auricchio ◽  
Riccardo Pietrabissa

Sign in / Sign up

Export Citation Format

Share Document