Effect of Quenching Media on Laser butt Welded Joint on Transformed -Induced Plasticity (TRIP) Steel

2020 ◽  
Vol 56 ◽  
pp. 623-634 ◽  
Author(s):  
Wen Wang ◽  
Shengyi Zhang ◽  
Ke Qiao ◽  
Kuaishe Wang ◽  
Pai Peng ◽  
...  

2021 ◽  
Vol 67 (1-2) ◽  
pp. 45-52
Author(s):  
S Khot Rahul ◽  
T Venkateshwara Rao ◽  
Natu Harshad ◽  
H N Girish ◽  
Tadashi Ishigaki ◽  
...  

The energy required for joining steel segments by using laser welding is relatively very low compared with arc welding, gas welding, or any other conventional welding techniques. Moreover, the rapid cooling may create a significant effect on different regions, such as the fusion zone (FZ), heat affected zone (HAZ), and base metal (BM), and in turn affect different parameters. In this study, the characteristics of the laser-welded joint were investigated by varying laser power, welding velocity and incident angle, and tensile strength. In our, experiments. the microhardness was increased by varying the power of laser welding. The strength of the joint was increased to 549 MPa with 2200 W high power, 30 mm/s velocity, and 80º laser incident angle. By increasing the power and velocity of the laser, the welding gun strength was improved; conversely, the angle of laser incident on the welding location decreased while its strength was increased.


2018 ◽  
Vol 142 ◽  
pp. 03004 ◽  
Author(s):  
Wen-Quan Wang ◽  
Shu-Cheng Dong ◽  
Fan Jiang ◽  
Ming Cao

Fiber laser welding of cold rolled TRIP steel (transformation Induced Plasticity steel) sheet with tensile strength of 820MPa and thickness of 1.4mm was carried out using shielding gases Ar and He, respectively. For the same laser power and welding speed, the effects of different shielding gases on penetration and bead section morphologies were investigated. The microstructures and properties of the TRIP steel joints were also studied. The investigation showed that higher penetration and lower porosity could be obtained under shielding gas He using the same laser power and welding speed. The microstructures of the TRIP joint mainly included martensite and retained austenite. But the joint microhardness and tensile strength were higher under the shielding gas He. The tensile strength of the welded joint perpendicular to the weld line was equal to that of the base metal. But the tensile strength of the joint parallel with the weld line was higher than that of the base metal. The plasticity and formability of the welded joint were impaired due to the formation of martensite in the weld metal.


The article is devoted to the actual problem of assigning optimal parameters for connecting steel plates on cover plates with angular welds that are widely used in construction practice. The article presents the results of a comprehensive study of operation of a welded assembly of the plates connection on cover plates. An algorithm is proposed for determining the optimal parameters of a welded joint with fillet welds on the cover plates, which makes it possible to obtain a strength balanced connection. The results of full-scale tensile tests of models were presented. These results confirmed the correctness of the assumed design assumptions, and made it possible to obtain a form of destruction, not characteristic and not described in the normative literature, expressed by cutting the main elements along the length of the overlap in the joint. The possibility of such a form of destruction was confirmed by the results of numerical research in a nonlinear formulation. The optimal parameters of the nodal welded joint determined by engineering calculation are confirmed by experimental studies, as well as by the results of numerical experiments on models of calculation schemes, taking into account the physical nonlinearity of the material operation. The obtained dependence for determining the bearing capacity of the joint by the cut-off mechanism and the expression for limiting the overlap length of the cover plates will make it possible to predict the nature of the fracture and design equally strong joints.


2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).


Sign in / Sign up

Export Citation Format

Share Document