scholarly journals An Investigation on Laser Welding Parameters on the Strength of TRIP Steel

2021 ◽  
Vol 67 (1-2) ◽  
pp. 45-52
Author(s):  
S Khot Rahul ◽  
T Venkateshwara Rao ◽  
Natu Harshad ◽  
H N Girish ◽  
Tadashi Ishigaki ◽  
...  

The energy required for joining steel segments by using laser welding is relatively very low compared with arc welding, gas welding, or any other conventional welding techniques. Moreover, the rapid cooling may create a significant effect on different regions, such as the fusion zone (FZ), heat affected zone (HAZ), and base metal (BM), and in turn affect different parameters. In this study, the characteristics of the laser-welded joint were investigated by varying laser power, welding velocity and incident angle, and tensile strength. In our, experiments. the microhardness was increased by varying the power of laser welding. The strength of the joint was increased to 549 MPa with 2200 W high power, 30 mm/s velocity, and 80º laser incident angle. By increasing the power and velocity of the laser, the welding gun strength was improved; conversely, the angle of laser incident on the welding location decreased while its strength was increased.

2008 ◽  
Vol 580-582 ◽  
pp. 479-482 ◽  
Author(s):  
Yuji Sakai ◽  
Kazuhiro Nakata ◽  
Takuya Tsumura ◽  
Mitsuji Ueda ◽  
Tomoyuki Ueyama ◽  
...  

Noncombustible magnesium alloy AMC602 (Mg-6mass%Al-2mass%Ca) extruded sheet of 2.0mm thickness was successfully welded using a fiber laser welding process at welding speed of 10m/min at 3kW laser power. Tensile strength of the welded joint was about 82 to 88% of that of the base metal. Vickers hardness, tensile strength and micro structural properties are also discussed.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 712 ◽  
Author(s):  
Xiongfeng Zhou ◽  
Ji’an Duan ◽  
Fan Zhang ◽  
Shunshun Zhong

Laser welding–brazing of 5A06 aluminum to Ti6Al4V titanium in a butt configuration was carried out to discuss the influences of welding parameters on dissimilar joint properties. The effects of laser offset, welding speed, and laser power on the spreading length of the molten aluminum liquid, interface fracture zone width (IFZW), fracture roughness, intermetallic compounds (IMCs) thickness, and tensile strength were also investigated. The microstructure and fracture of the joint were also studied. The results show that the tensile strength of the joint is not only influenced by the thickness and type of IMCs, but also influenced by the spreading ability of the aluminum liquid, the fracture area broken at the Ti/fusing zone (FZ) interface, and the relative area of the brittle and ductile fracture in FZ. A dissimilar butt joint with an IMC thickness of 2.79 μm was obtained by adjusting the laser offset, welding speed, and laser power to 500 μm, 11 mm/s and 1130 W, respectively. The maximum tensile strength of the joint was up to 183 MPa, which is equivalent to 83% of the tensile strength of the 5A06 aluminum alloy.


2017 ◽  
Vol 740 ◽  
pp. 155-160 ◽  
Author(s):  
Z.A. Zakaria ◽  
K.N.M. Hasan ◽  
M.F.A. Razak ◽  
Amirrudin Yaacob ◽  
A.R. Othman

In this study, the effects of various welding parameters on welding strength in low carbon steel JIS G 3101 SS400, welded by gas metal arc welding were investigated. Welding current, arc voltage and travel speed are the variable parameters were studied in this study. The ultimate tensile strength, hardness and heat affected zone were measured for each specimen after the welding operations, and the effects of these parameters on strength were examined. Then, the relationship between welding parameter and ultimate tensile strength, hardness and heat affected zone were determined. Based on the finding, the best parameter is formulated and used to calculate the heat input.


2018 ◽  
Vol 142 ◽  
pp. 03004 ◽  
Author(s):  
Wen-Quan Wang ◽  
Shu-Cheng Dong ◽  
Fan Jiang ◽  
Ming Cao

Fiber laser welding of cold rolled TRIP steel (transformation Induced Plasticity steel) sheet with tensile strength of 820MPa and thickness of 1.4mm was carried out using shielding gases Ar and He, respectively. For the same laser power and welding speed, the effects of different shielding gases on penetration and bead section morphologies were investigated. The microstructures and properties of the TRIP steel joints were also studied. The investigation showed that higher penetration and lower porosity could be obtained under shielding gas He using the same laser power and welding speed. The microstructures of the TRIP joint mainly included martensite and retained austenite. But the joint microhardness and tensile strength were higher under the shielding gas He. The tensile strength of the welded joint perpendicular to the weld line was equal to that of the base metal. But the tensile strength of the joint parallel with the weld line was higher than that of the base metal. The plasticity and formability of the welded joint were impaired due to the formation of martensite in the weld metal.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2017 ◽  
Vol 62 (1) ◽  
pp. 327-333 ◽  
Author(s):  
J. Pikuła ◽  
M. Łomozik ◽  
T. Pfeifer

Abstract Welded installations failures of power plants, which are often result from a high degree of wear, requires suitable repairs. In the case of cracks formed in the weld bead of waterwall, weld bead is removed and new welded joint is prepared. However, it is associated with consecutive thermal cycles, which affect properties of heat affected zone of welded joint. This study presents the influence of multiple manual metal arc welding associated with repair activities of long operated waterwall of boiler steel on properties of repair welded joints. The work contains the results of macro and microscopic metallographic examination as well as the results of hardness measurements.


Author(s):  
Hanmant Virbhadra Shete ◽  
Sanket Dattatraya Gite

Gas metal arc welding (GMAW) is the leading process in the development of arc welding process for higher productivity and quality. In this study, the effect of process parameters of argon gas welding on the strength of T type welded joint of AISI 310 stainless steel is analyzed. The Taguchi technique is used to develop the experimental matrix and tensile strength of the welded joint is measured using experimental method and finite element method. Optimization of input parameter is performed for the maximum tensile strength of welded joint using ANOVA. The results showed that welding speed is the most significant factor affecting the tensile strength followed by voltage in argon gas metal arc welding (AGMAW) process. Argon gas welding process performance with regard to the tensile strength is optimized at voltage: 18.5 V, wire feed speed: 63 m/min and welding speed: 0.36 m/min.


2014 ◽  
Vol 22 (1) ◽  
pp. 93-98
Author(s):  
Pavol Švec ◽  
Viliam Hrnčiar ◽  
Alexander Schrek

AbstractThe effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.


Sign in / Sign up

Export Citation Format

Share Document