scholarly journals A Thermal aging and catalyst concentration effects on thermo-dynamical and mechanical properties of a polyester fiberglass composite

Author(s):  
Belaid Salim ◽  
Salem Fouad Chabira ◽  
Pascale Balland ◽  
Ahmed Maati ◽  
M. Sebaa

This work deals with the characterization by physicochemical and mechanical analysis performed on composite polyester fiberglass plates molded by contact and aged in thermo-stated ovens to simulate their deleterious environment of use. The DSC analysis revealed that the catalyst concentration affected the thermal behavior of the composite. Indeed, the addition of a higher catalyst concentration slightly lowered the glass transition temperature. From a mechanical point of view, it was observed that the catalyst addition made the material stiffer. The properties at fracture were also affected by the catalyst concentration and varied irregularly with aging.

2006 ◽  
Vol 51 ◽  
pp. 75-80
Author(s):  
Yasuaki Shinoda ◽  
Ichiro Shiota ◽  
Yuichi Ishida ◽  
Toshio Ogasawara ◽  
Rikio Yokota

TriA-PI is a newly developed phenylethnyl terminated polyimide. It exhibits excellent mechanical properties and processability with high glass transition temperature (Tg>300°C). Nano-size particles of fullerene were dispersed throughout a thermosetting polyimide Triple API (TriA-PI) to elevate the glass transition temperature. The increase of the glass transition temperature of the composites with the fullerene was confirmed by dynamic mechanical analysis (DMA).


2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Lamya Zahir ◽  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Yuushou Nakayama ◽  
Takeshi Shiono ◽  
...  

An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications.


2018 ◽  
Vol 136 (12) ◽  
pp. 47230 ◽  
Author(s):  
Marlène Desloir ◽  
Cyril Benoit ◽  
Amine Bendaoud ◽  
Pierre Alcouffe ◽  
Christian Carrot

Author(s):  
Pragati Priyanka ◽  
Harlal Singh Mali ◽  
Anurag Dixit

Comprehensive experimental results of dynamic mechanical analysis (DMA) of polymer reinforced textile composites are presented in the current investigation. Plain and 2x2 twill woven multilayer fabrics of monolithic kevlar and hybrid carbon-kevlar (C-K) are reinforced into the thermoset polymer matrix. Kevlar/epoxy and C-K/epoxy composite laminates are fabricated using an in-house facility of the vacuum-assisted resin infusion process. Variation of the visco-elastic behaviour (storage modulus, damping factor and glass transition temperature, Tg) along with time, temperature and frequency is studied for the composites. Dynamic mechanical analysis is performed under temperature sweep with frequency ranging from 1-50 Hz. Results depict the effect of inter yarn hybridisation of carbon with kevlar yarns on the storage modulus, damping performance, and creep behaviour of dry textile composites. Temperature swept dynamic characterisation is also performed to evaluate the degradation and damping performance of the composite laminates soaked in the deionised water at glass transition temperature Tg, ½ Tg, and ¾ Tg. The morphological study has been performed post the dynamic mechanical analysis using field emission scanning electron microscope.


Author(s):  
Galina S. Bozhenkova ◽  
Alexandra N. Tarakanovskaya ◽  
Oksana D. Tarnovskaya ◽  
Roman V. Ashirov

The article is devoted to the production of polymer by metathesis ring-opening polymerization under the influence of ruthenium initiator of type of Hoveyda-Grubbs II generation. The monomer used the mixture of dimethyl ether norbornene-2;3-dicarboxylic acid. The monomer was prepared by the Diels-Alder reaction of dicyclopentadiene and dimethyl maleate. The polymer was prepared in bulk of the monomer mixture. In this paper we have studied the physical and mechanical properties polydimethyl ether of norbornene-2;3-dicarboxylic acid; and assessed the impact of environmental factors on the change in properties of the polymer. As environmental factors; light; UV radiation; water; 0.1 M hydrochloric acid were applied; and accelerated aging conditions; which were held in a climate chamber. During performance we found that maintaining the polymer samples in the UV light chamber led to the slight increase in flexural modulus. In contrast; the polymer storage in water and in a hydrochloric acid solution for two months resulted in a slight decrease in the modulus of elasticity in bending index. These factors did not affect the change in the glass transition temperature of the polymer. Under the conditions of accelerated aging conducted for 1; 2 and 6 days after two cycles we observed the drop in modulus for bending of 8.5%; after 6 cycles of 13%. The glass transition temperature of polydimethyl ether of norbornene-2;3-dicarboxylic acid after 6 cycles decreased by only 3.4% in the climatic chamber. Studies have shown that the resulting polymer is resistant to water; hydrochloric acid; light and UV radiation; as well as it saves properties at a sufficient level for operation at conditions of accelerated aging. It should be noted that the tested polymer was prepared without additives; stabilizers and antioxidants. The proposed polymer can be used as a structural material for machine parts; including bulky.For citation:Bozhenkova G.S.; Tarakanovskaya A.N.; Tarnovskaya O.D.; Ashirov R.V. Influence of environmental factors on physical-mechanical properties of polydimethyl ether of norborene -2;3-dicarboxylic acid. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 5. P. 68-73


Sign in / Sign up

Export Citation Format

Share Document