scholarly journals Rancang Bangun Alat Untuk Monitoring Parameter Pada Sistem Pemanen Energi Matahari Dengan Model Telemetri Multi Node Menggunakan Komunikasi Serial I2C

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fiqri Ihwanul Falah ◽  
Wakhyu Dwiono ◽  
Muhammad Taufiq Tamam

Telemetri adalah penggunaan telekomunikasi untuk mengirimkan sinyal pengukuran secara otomatis dari alat ukur yang berada pada jarak jauh. Dalam pemantauan tidak semua kondisi memungkinkan dilakukan secara langsung dikarenakan terkendali oleh faktor geografis dan jarak sehingga digunakan metode dengan model telemetri. Tujuan dari penelitian ini adalah mewujudkan sistem telemetri menggunakan modul HC-12 dengan komunikasi serial I2C. Perancangan ini terdiri dari perangkat keras (PIC 16F877A, Arduino UNO, LM35, ACS712 30A, Voltage Divider, FTDI 232RS dan Modul HC-12) dan perancangan perangkat lunak dengan Bahasa pemrograman C. Data hasil, dianalisa mengunakan metode grafik dan teori error. Hasil komunikasi serial I2C dapat mengirimkan 20 data sensor secara bergantian dengan baik dengan jarak jangkauan 0,20 meter hingga 4,80 meter. Tegangan keluaran keseluruhan sensor sebanding dengan sensitivitas dan berbanding secara linier terhadap hasil data sensor. Hasil modul HC-12 sebagai telemetri dapat mengirimkan data dengan jangkauan jarak 50 meter data terkirim dengan baik, melebihi jarak tersebut data dapat terkirim namun terdapat noise. Hasil pengukuran data error didapatkan error sensor suhu pada pengujian pertama 1,6%. Pada pengujian kedua sensor suhu error 1,45%. Error sensor tegangan pada pengujian pertama 2,75%. Pada pengujian kedua sensor tegangan error 2,1%. Error sensor arus pada pengujian pertama 3,05%. Error pengujian kedua sensor arus 2,95%.

2015 ◽  
Vol 793 ◽  
pp. 378-382 ◽  
Author(s):  
Nurul Afiqah Zainal ◽  
Sasikala A.P. Ganaisan ◽  
Ajisman

This paper proposes the implementation of a simple fuzzy logic controller (FLC) for a DC-DC boost converter based on a microcontroller to obtain maximum power from the solar system with the maximum power point tracking (MPPT) method. The system includes a solar panel, DC-DC boost converter, the fuzzy logic controller implemented on Arduino Uno for controlling on/off time of MOSFET of the boost converter, voltage divider and optocoupler circuit. This paper presents a fuzzy logic real time code in the Arduino language for ATmega328 microcontroller on the Arduino UNO board. The designed system increases the efficiency of the solar panel based on experimental results.


2020 ◽  
Vol 5 (1) ◽  
pp. 73
Author(s):  
Risky Martin Antosia

One part of the geoelectric method is DC (Direct Current) resistivity measurement. Physical parameters measured by the system are the current and potential difference. From these two parameters, the resistance value is obtained based on Ohm’s law. Based on the current-potential electrodes configuration in the DC resistivity measurement, there is the possibility of contact between the potential-current electrodes and also the position of the potential electrodes that can be exchanged. Thus, an auto-range Voltmeter is needed which can measure the potential difference with the order of mV up to hundreds of volts and can measure negative potential difference value (reversed polarity). This research aims to build a Voltmeter prototype using ADS1115 (namely ADC with 16-bit resolution) and Arduino Uno, which can be applied in DC resistivity measurement. In this system, there is internal resistance and switch. The internal resistance is around 2.4 MΩ, arranged into a voltage divider circuit to be able to measure the maximum potential input around 1,600 V. The switch function is to set the measurement mode (as auto-range), which is set by Arduino Uno. Furthermore, ADS1115 uses a differential measurement method to be able to measure a negative potential difference. Based on the results of tests on several resistor components with an adjustable voltage source, the Voltmeter is good at measuring the potential difference in resistor values below 10 KΩ with a confidence level of around 97%.


2016 ◽  
Vol 18 (4) ◽  
pp. 10
Author(s):  
Tsamaroh Nidaa Putri ◽  
Priyo Sasmoko

           Tsamaroh Nidaa Putri, Priyo Sasmoko explains that accumulator is a combination of several pieces of cells used for altering the chemical energy into electricity energy used in motor vehicles. Accumulators are used continuously will shrink and drop so it needs to be recharged. To know the state of the battery voltage drop experienced the need for a measurement to determine the ability of the accumulator. Design manufacture accumulator discharge monitoring tool consists of a voltage divider circuit to know the big accumulator voltage in percentage form. Used also an ACS712 current sensor to detect the discharge current and LM35 temperature sensor to determine the temperature of the accumulator. The control system used is the Arduino UNO microcontroller and an LCD for displaying the measurement data. Normal voltage ranges accumulator 12,5V - 13,8V. Accumulator with a capacity of 5Ah takes 8 hours to process discharge when using 20 watt lamp load. If the voltage of the first accumulator on the LCD shows the percentage of 0 % then automatically the system will work to discharge  for a second accumulator. The duration of use depends on the large accumulator load used. Keyword:Accumulator, ACS712,  capacity accumulator, Arduino UNOReferencesAgustin, Leonandi. 2015. Rancang Bangun Sistem Monitoring Kondisi Aki Pada Kendaraan Bermotor. Skripsi. Universitas Tanjungpura Pontianak.Andri, Helly. 2010.  Rancang Bangun System Battery Charging Automatic. Skripsi S1 Teknik Elektro Fakultas Teknik Universitas Indonesia.Asnan, Zainal. 2007. Alat Pengecekan Kapasitas Aki (Accu) Berbasis Personal Computer. Skripsi. Universitas Katolik Widya Mandala Surabaya.Bishop, Owen. 2004. Dasar-dasar Elektronika. Jakarta: Erlangga, Alih Bahasa Irzam Harmein.Fadli, Usman. 2015. Aplikasi Sensor Arus ACS712 Dan Borland Delphi 7.0 untuk Monitoring Penggunaan Daya Listrik pada Rumah Berbasis Arduino UNO. Tugas Akhir. Universitas Diponegoro.Frank D. Petruzella., 2001, Elektronika Industri. Yogyakarta: Penerbit ANDI, Penerjemah Suminto, Drs. MA.,Kadir, Abdul. 2013. Panduan Praktis Mempelajari Aplikasi Mikrokontroler dan Pemrogamannya Menggunakan Arduino. Yogyakarta: Penerbit ANDI.Marpaung, May Harpri Rabiman. 2014. Monitoring Suhu dengan Menggunakan Sensor Suhu LM35 Serta Pengaturan Suhu Pada Otomatisasi Dispenser Berbasis Arduino UNO dengan Tampilan LCD. Tugas Akhir. Universitas Diponegoro.Salim, Emil. 2014. Perancangan dan Implementasi Telemetri Suhu Berbasis Arduino UNO, Skripsi. Universitas Sumatra Utara.Setiyawan, Danang Duwi. 2015. Pengisi Baterai Akumulator Otomatis Berbasis Mikrokontroller. Tugas Akhir. Universitas Gajah Mada.Tooley, Michael. 2003. Rangkaian Elektronik Prinsip dan Aplikasi. Jakarta: Erlangga, Alih Bahasa Irzam Harmein


Author(s):  
Leily W Johar

The use of DC source voltage obtained from solar cells and DC generators varies in value depending on the surrounding natural conditions, for that a controller is needed which functions to regulate the voltage in carrying out the charging process to the accumulator. This paper will discuss about the design of charge controller based on Arduino Uno R3 with ATmega328 microcontroller. This controller is used to regulate the charging process from a DC source with a maximum open circuit voltage of 24 Volts, which is then used to charge the 12 Volt accumulator. This charge controller works by sending a source voltage that is regulated by pulse width modulation. When the accumulator voltage is 13.8 Volt, the controller will carry out a charging process with a duty cycle of 95%, if the accumulator voltage is> 13.8 Volts and ˂14.4 Volts, charging will be carried out with a duty cycle of 10%, and if the accumulator voltage exceeds 14.4 Volt, the charging process will be stopped. Some protection equipment is also included in this charge controller such as overvoltage protection, overcurrent and also control of the connection breaker to the load when the accumulator voltage is weak, and a disconnect from source to accumulator when the accumulator condition is full. To show the work of the whole system, with the Arduino Uno R3 microcontroller the parameters of source voltage, accumulator voltage and percentage of accumulator status are displayed on the LCD screen then 2 LED lights and a buzzer as indicators during the charging process and when the accumulator condition is weak. From the results of the voltage reading on the voltage divider sensor, it has an error of less than 6.22% at the source terminal and 6.89% at the accumulator terminal..


Author(s):  
Umang Deogade

Abstract: The most significant system for monitoring solar systems is the solar parameters monitoring system. Solar energy is a renewable energy source produced by solar panels. Solar energy is a renewable energy source produced by solar panels. Voltage, light intensity, and temperature are the parameters that the system measures. An Arduino Uno microcontroller board is used in the suggested monitoring system. Solar panel, LDR Sensor, LM 35, Arduino microcontroller, and resistors are used in the system. Light. LDR sensor is used to detect light intensity, L35 is used to measure temperature, and a voltage divider circuit is used to monitor voltage in this system. Keywords: Solar Panel, Monitoring, Renewable Energy, Solar Panel, Arduino Uno.


Author(s):  
A. V. Crewe ◽  
M. W. Retsky

A 100 kv scanning transmission microscope has been built. Briefly, the design is as follows: The electron gun consists of a field emission point and a 3 cm Butler gun. The beam has a crossover outside the gun and is collimated by a condenser lens.The parallel beam passes through a defining aperture and is focused by the objective lens onto the specimen. The elastic electrons are detected by two annular detectors, each subtending a different angle, and the unscattered and inelastic electrons are collected by a third detector. The spectrometer that will separate the inelastic and unscattered electrons has not yet been built.The lens current supplies are stable to within one part per million per hour and have been described elsewhere.The high voltage is also stable to 1 ppm/hr. It consists of the raw supply from a 100 kv Spellman power supply controlled by an external reference voltage, high voltage divider, and error amplifier.


2020 ◽  
Vol 5 (1) ◽  
pp. 78
Author(s):  
Ade Sumaedi ◽  
Makhsun Makhsun ◽  
Achmad Hindasyah

PT. Duta Nichirindo Pratama is a company engaged in the field of Autoparts Manufacture. Barcode is the identity of an item / product on the package. Barcode technology has been used as the identity of goods in a production. Barcodes are used to facilitate the identification of goods produced. Paste the barcode on the packaging of packaging results at PT. Duta Nichirindo Pratama is done manually, but there are often errors attached to the barcode on a similar packaging. This research will design and create a system based on Visual Basic.Net and Arduino to select barcode attachment errors that have the potential to be sent to consumers. The system is designed using Unified Modeling Language (UML) diagrams, database design and interface menu design. The system created will then be tested to detect the black box test. With a computing-based design system that functions to detect barcodes on the packaging automatically, the problem of sticking barcodes on the packaging can be detected.


Author(s):  
Aulia El Hakim
Keyword(s):  

Kendali perangkat elektronika secara jarak jauh pada umumnya menggunakan remote infra merah ataupun menggunakan kendali sms gateway. Permasalahan terjadi Jika menggunakan Ired Pada saat pengiriman data,  maka antara infra merah sebagai transmiter dan receiver  harus berhadapan satu sama lain tanpa ada penghalang. Hal ini dapat menyulitkan dalam proses pengendalian perangkat elektronika secara jarak jauh. Sedangkan bila menggunakan sms gateway maka dibutuhkan pulsa “sms” untuk komunikasi data, sehingga pengendalian tidak effisien dan tidak praktis. Penelitian ini Bertujuan sebagai alternatif lain dalam pengendalian perangkat elektronika secara nirkabel yang ekonomis dan praktis. Board mikrokontroller yang digunakan pada penelitian ini bersifat open-source yaitu menggunakan board arduino uno. Untuk pembuatan aplikasi Android AndroBlue pada smartphone, dengan memanfaatkan pemrograman berbasis online dari ai2.appinventor.mit.edu.Cara penggunaan alat ini adalah dengan mengaktifkan Bluetooth pada Smartphone Android dan memberikan daya pada prototipe kendali perangkat elektronika, kemudian dilakukan pairing antara bluetooth pada smartphone dengan bluetooth yang ada pada prototipe kendali. Setelah terhubung, maka perangkat elektronika tersebut dapat dikendalikan dengan menggunakan aplikasi AndroBlue yang sudah terinstall pada smartphone. Dari hasil pengujian terhadap kendali perangkat elektronika secara jarak jauh dapat diketahui dari 10 kali uji coba dengan perbedaan jarak yang sudah ditentukan, tingkat keberhasilan  mencapai 80 %.


Sign in / Sign up

Export Citation Format

Share Document