scholarly journals MATHEMATICAL MODEL OF DENGUE CONTROL WITH CONTROL OF MOSQUITO LARVAE AND MOSQUITO AFFECTED BY CLIMATE CHANGE

2021 ◽  
Vol 15 (3) ◽  
pp. 417-426
Author(s):  
Wartono Wartono ◽  
Mohammad Soleh ◽  
Yuslenita Muda

Consider a SIR model for the spread of dengue hemorrhagic fever involving three populations, mosquito eggs, mosquitoes, and humans. The parameters of the SIR model were estimated using rainfall data and air temperature for the cities of Pekanbaru and Solok. The main aim of this paper is to determine the effect of mosquito larvae and adult mosquito control on the spread of the dengue virus. Numerical solutions were also presented by using the Runge-Kutta method of order 4. Based on the results, the SIR model was obtained by involving the control parameters of mosquito larvae and adult mosquitoes. Besides, the mosquito population is affected by changes in temperature, rainfall, and fog. Numerical simulations illustrate that the number of infected mosquitoes and infected humans is influenced by the parameters of the percentage of mortality of mosquito larvae and adult mosquitoes.

2017 ◽  
Vol 13 (2) ◽  
pp. 4657-4670
Author(s):  
W. S. Amer

This work touches two important cases for the motion of a pendulum called Sub and Ultra-harmonic cases. The small parameter method is used to obtain the approximate analytic periodic solutions of the equation of motion when the pivot point of the pendulum moves in an elliptic path. Moreover, the fourth order Runge-Kutta method is used to investigate the numerical solutions of the considered model. The comparison between both the analytical solution and the numerical ones shows high consistency between them.


Author(s):  
Wahid S. Ghaly ◽  
Georgios H. Vatistas

Abstract This paper deals with the numerical solutions of converging and diverging flows, between two disks. The results are obtained by solving a nonlinear third order ordinary differential equation using a modified shooting method. The governing equation is written as a system of three nonlinear first order ODE’s and the resulting system is solved as an initial value problem via the Runge-Kutta method. The results are given in terms of velocity profiles and static pressure distributions. These are compared with previously reported experimental data obtained by others.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
M. Y. Liu ◽  
L. Zhang ◽  
C. F. Zhang

The implicit Runge–Kutta method with A-stability is suitable for solving stiff differential equations. However, the fully implicit Runge–Kutta method is very expensive in solving large system problems. Although some implicit Runge–Kutta methods can reduce the cost of computation, their accuracy and stability are also adversely affected. Therefore, an effective banded implicit Runge–Kutta method with high accuracy and high stability is proposed, which reduces the computation cost by changing the Jacobian matrix from a full coefficient matrix to a banded matrix. Numerical solutions and results of stiff equations obtained by the methods involved are compared, and the results show that the banded implicit Runge–Kutta method is advantageous to solve large stiff problems and conducive to the development of simulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Ademir L. Xavier Jr.

This paper shows how to apply a simple Runge-Kutta algorithm to get solutions of Kirchhoff equations for static filaments subjected to arbitrary external and static forces. This is done by suitably integrating at once Kirchhoff and filament reference system equations under appropriate initial boundary conditions. To show the application of the method, we display several numerical solutions for filaments including cases showing the effect of gravity.


2020 ◽  
Vol 9 (2) ◽  
pp. 135-140
Author(s):  
Sri Maharsi ◽  
Oktia Woro Kasmini Handayani ◽  
Yuni Wijayanti

Increased dengue cases occur throughout Southeast Asia. Semarang Health Office held programs to control dengue,which are Rainfall monitoring,Routine Mosquito Larvae Monitoring Program, One House One Larvae Observer Movement, And Students look For Mosquito Larvae Movement. To assess whether the programs reducing Dengue Hemorrhagic Fever caseswere effective. The method used were correlation analysis. Data obtained from every region in Semarang and reported to Semarang Health Office. Average Dengue Hemorrhagic Fever case was 79.5±13.69. Correlationtest results between dengue cases with rainfall was r=0.951;p=0.049, Larvae Absence Rate from Routine Mosquito Larvae Monitoring Program was r=0.648;p=0.352, with Larvae Absence Rate from One House One Larvae Observer Movement was r=0.804;p=0.196, with Larvae Absence Rate from Students Search For Mosquito Larvae Movement was r=0.961;p=0.039. Correlation between rainfall and Larvae Absence Rate from Students Search For Mosquito Larvae Movement with Dengue Hemorrhagic Fever case were significant and had positive strong correlation,correlation test results of Larvae Absence Rate from Routine Mosquito Larvae  Program and One House One Larvae Observer Movement had strong correlation but were not significant.


2021 ◽  
Vol 2 (1) ◽  
pp. 37-44
Author(s):  
Rizky Ashgi

Coronavirus Disease 2019 has become global pandemic in the world. Since its appearance, many researchers in world try to understand the disease, including mathematics researchers. In mathematics, many approaches are developed to study the disease. One of them is to understand the spreading of the disease by constructing an epidemiology model. In this approach, a system of differential equations is formed to understand the spread of the disease from a population. This is achieved by using the SIR model to solve the system, two numerical methods are used, namely Euler Method and 4th order Runge-Kutta. In this paper, we study the performance and comparison of both methods in solving the model. The result in this paper that in the running process of solving it turns out that using the euler method is faster than using the 4th order Runge-Kutta method and the differences of solutions between the two methods are large.


2019 ◽  
Vol 17 ◽  
pp. 147-154
Author(s):  
Abhinandan Chowdhury ◽  
Sammie Clayton ◽  
Mulatu Lemma

We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered.


2019 ◽  
Vol 17 (1) ◽  
pp. 1515-1525
Author(s):  
Yazid Alhojilan

Abstract This paper aims to present a new pathwise approximation method, which gives approximate solutions of order $\begin{array}{} \displaystyle \frac{3}{2} \end{array}$ for stochastic differential equations (SDEs) driven by multidimensional Brownian motions. The new method, which assumes the diffusion matrix non-degeneracy, employs the Runge-Kutta method and uses the Itô-Taylor expansion, but the generating of the approximation of the expansion is carried out as a whole rather than individual terms. The new idea we applied in this paper is to replace the iterated stochastic integrals Iα by random variables, so implementing this scheme does not require the computation of the iterated stochastic integrals Iα. Then, using a coupling which can be found by a technique from optimal transport theory would give a good approximation in a mean square. The results of implementing this new scheme by MATLAB confirms the validity of the method.


Sign in / Sign up

Export Citation Format

Share Document