scholarly journals Sistem Pengendalian dan Monitoring Distribusi Air Berbasis Nodemcu 8266

2020 ◽  
Vol 12 (1) ◽  
pp. 16-23
Author(s):  
Laxmy Devy ◽  
Yul Antonisfia ◽  
Monica Febrina ◽  
Suryadi Suryadi

Clean water management is managed by a Perusahaan Daerah Air Minum (PDAM), which is centered on each local government. The distribution of water to consumers cannot be done evenly because of the water distribution system and manual monitoring. Overcoming these problems, the Water Distribution Equity System to Consumers can be used to monitor and control water distribution. This system regulates the debit and time zone for water distribution to consumers. Water discharge is detected by the water flow sensor, and  the valve is connected to the servo and time zone using RTC DS1307. The water pump is controlled to maintain the volume of water in the reservoir. The water level in the reservoir is detected using the HC-SR04 ultrasonic sensor. Water distribution is monitored on PCs (Personal Computers) and smartphones using Delphi programming and Thingspeak. The reading of water discharge is generated during peak use times for each faucet is 1.9: 1.8: 1.8 while at the time of normal use the ratio of the initial distribution to each faucet is 2.5: 2.3, 1: 1, and 2.5: 2.3.  

2015 ◽  
Vol 14 (1) ◽  
pp. 52-67 ◽  
Author(s):  
Raquel Vannucci Capelletti ◽  
Ângela Maria Moraes

Water is the main stimulus for the development of microorganisms, and its flow has an important role in the spreading of contaminants. In hospitals, the water distribution system requires special attention since it can be a source of pathogens, including those in the form of biofilms often correlated with resistance of microorganisms to various treatments. In this paper, information relevant to cases of nosocomial infections involving water circuits as a source of contaminants is compiled, with emphasis on the importance of microbiological control strategies to prevent the installation, spreading and growth of microorganisms in hospitals. An overview of the worldwide situation is provided, with emphasis on Brazilian hospitals. Different approaches normally used to control the occurrence of nosocomial infections due to waterborne contaminants are analyzed, and the use of the polysaccharide chitosan for this specific application is briefly discussed.


2019 ◽  
Vol 3 (2) ◽  
pp. 172
Author(s):  
Ayu Rahmad Jayanti ◽  
Ririn Endah Badriani ◽  
Yeny Dhokhikah

The clean water distribution in the Genteng Subdistrict, Banyuwangi Regency is included in the service area of the Zone 1 PDAM tile unit. The 60 liters/second reservoir discharge capacity is obtained from Sumber Umbul Sari in the Glenmore District. The distribution of clean water in Zone 1 is still less than 70% of the area served, as the installed discharge capacity is estimated to be insufficient. In order to achieve the distribution goal, a network system must be developed by adding direct debits and planning a new pipeline. The Epanet 2.0 program simplifies the calculation of pipeline networks by integrating elevation data, network maps, pipeline specification, and load. The analysis of the simulation results was conducted using the Public Works Minister's hydraulic parameter standards 2007. Planning of a distribution network and a cost budget in 2029 were done to estimate the water supply needs and budgets required. The hydraulic simulation results based on the analysis of the pressure of all joints are in accordance with the standard, while the analysis of the velocity in pipe is less standard. The need for water discharge in 2029 is 71.6 liters/second. In Kembiritan Village, the construction of distribution pipes with an additional reservoir unit was planned. The planned pipe dimensions in the development area were 25 mm at 796 meters, 50 mm at 4062 meters, and 75 mm at 1518 meters. The cost of planning a clean water distribution system in 2029 is Rp. 1,431,375,000.00. Distribusi air bersih di Kecamatan Genteng Kabupaten Banyuwangi merupakan wilayah pelayanan Zona 1 PDAM unit Genteng. Kapasitas debit reservoir sebesar 60 liter/detik berasal dari sumber umbul sari di Kecamatan Glenmore. Pendistribusian air bersih di wilayah Zona 1 masih kurang dari 70% wilayah yang terlayani, karena diperkirakan kapasitas debit yang terpasang kurang mencukupi. Untuk memenuhi target pemerataan distribusi perlu pengembangan sistem jaringan dengan penambahan debit dan perencanaan jaringan pipa baru. Program Epanet 2.0 memudahkan dalam perhitungan jaringan perpipaan dengan mengintegrasi data elevasi, peta jaringan, spesifikasi pipa dan debit. Analisis hasil simulasi menggunakan standar parameter hidrolis Permen PU 2007. Perencanaan pengembangan jaringan distribusi dan anggaran biaya pada tahun 2029 guna memperkirakan debit kebutuhan air dan anggaran biaya yang dibutuhkan. Hasil simulasi hidrolis berdasarkan analisis tekanan semua junction telah sesuai standar, sedangkan analisis kecepatan masih di bawah standar. Kebutuhan debit air tahun 2029 sebesar 71,6 Liter/detik. Pengembangan pipa distribusi direncanakan di Desa Kembiritan dengan tambahan satu unit reservoir. Dimensi pipa rencana di wilayah pengembangan digunakan diameter 25 mm sepanjang 796 m, diameter 50 mm sepanjang 4062 m dan diameter 75 mm sepanjang 1518 m. Biaya perencanaan sistem distribusi air bersih tahun 2029 sebesar Rp. 1.431.375.000,00.


2021 ◽  
Vol 6 (2) ◽  
pp. 107-120
Author(s):  
Kiki Rizky Fauziah ◽  
Nora Pandjaitan ◽  
Titiek Ujianti Karunia

Water distribution systems are often problematic in terms of quantity, pressure, continuity and quality. The research aimed to analyze water distribution system of PDAM Tirta Kahuripan Kabupaten Bogor in Ciomas Permai Residence. The research was conducted by collecting primary and secondary data. Analysis of clean water distribution system was carried out using the EPANET 2.0. Ciomas Permai Residence was located in zone 6 of PDAM Tirta Kahuripan servive areas. The result showed that the quality of the distributed water was in accordance with the applicable standard and continuous for 24 hours even though there were significant discharge differences during peak hours. Based on the measurement on Sunday and Monday, the minimum discharge were 14.4 l/sec and 13.8 l/sec respectively, higher than customer requirements of 7.34 l/sec, The water distribution pressure ranged from 0.7 - 1.35 bar. The result of clean water distribution simulation using EPANET 2.0 showed that the velocity of water and headloss were not accordance with the applicable standards.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jonah Swanata ◽  
M Ikhsan Setiawan

Water is one of the natural resources that is very important for the life of living things, and even becomes the main life for humans. With the existing treatment system and piping network system, Surya Sembada PDAM is expected to be able to meet the community’s clean water needs in Surabaya city. One og crucial things is the performance of reservoir in piped water distribution system from the clean water treatment plant. This study aims to evaluate the reservoir performance of the Surabaya PDAM, specifically the performance of Putat Gede reservoir, which is a distribution reservoir that serves the distribution of clean water to Graha Family Surabaya city. In this study Epanet 2.0 software was used as a hydrodynamic modelling tool. Based on the simulation result, at peak hours 07.00 a.m. reservoir Putat Gede is able to serve the community’s clean water needs. The farthest node has the lowest pressure of 15,45 m, and the lowest water level of the reservoir Putat Gede occurs at 09.00 a.m. which is 3 m. In general, the reservoir is still able to meet community’s clean water needs, especially during peak hours.


2018 ◽  
Vol 23 (4) ◽  
pp. 70 ◽  
Author(s):  
José-Roberto Bermúdez ◽  
Francisco-Ronay López-Estrada ◽  
Gildas Besançon ◽  
Guillermo Valencia-Palomo ◽  
Lizeth Torres ◽  
...  

This work presents the modeling and simulation of a hydraulic network with four nodes and two branches that form a two-level water distribution system. It also proposes a distribution of hydraulic valves that allows emulating a leak using a valve and different network configurations, e.g., simple ducts, closed networks and branched networks. The network is modeled in the steady state considering turbulent flow. Numerical experiments are performed, and the results show that the proposed network is useful for the design of leakage diagnosis and control algorithms in different configurations and leakage scenarios.


Author(s):  
Wiro Saputra

Abstract Water is a basic need for human survival, clean water needs continue to increase while the supply of raw water infrastructure is still limited, there is often a lack of fulfillment of needs during the dry season, clean water crisis is one of the problems in Indragiri Hilir District especially in Simpang Gaung Village. Planning for a clean water distribution system really needs to be taken into account in order to guarantee the fulfillment of the level of service, in planning the clean water pipeline is determined by the water requirements and the required flow pressure. The amount or discharge of water provided depends on the population and industry served. The purpose of this study is to obtain clean water needs and a piping network system 15 based on the needs of the population in the next 15 years. The population of Simpang Gaung Village in 2018 is 4,100 people, with the semi average soul method of population growth up to 2033 is 4,283 people. The total water demand with a population of 4334 million in 2033 is 2.9420 liters / second. The source of water used is the river.     Abstrak Air merupakan kebutuhan yang mendasar bagi kelangsungan hidup manusia, kebutuhan air bersih terus meningkat sementara penyediaan prasarana air baku masih terbatas, sering terjadi kekurangan pemenuhan kebutuhan saat musim kemarau, krisis air bersih merupakan salah satu masalah di Kabupaten Indragiri Hilir khusunya di Desa Simpang Gaung. Perencanaan sistem distribusi air bersih sangat perlu diperhitungkan agar dapat menjamin terpenuhinya tingkat pelayanan, pada perencanaan jaringan pipa air bersih ditentukan oleh kebutuhan air dan tekanan aliran yang diperlukan. Jumlah atau debit air yang disediakan tergantung pada jumlah penduduk dan industri yang dilayani. Tujuan dari studi ini adalah untuk mendapatkan kebutuhan air bersih dan sistim jaringan perpipaan 15 berdasarkan kebutuhan penduduk 15 tahun kedepannya. Jumlah penduduk Desa Simpang Gaung tahun 2018 berjumlah 4.100 jiwa, dengan metode semi average jiwa pertumbuhan penduduk sampai dengan tahun 2033 adalah 4.283 jiwa. Total kebutuhan air dengan jumlah penduduk 4334 juta jiwa pada tahun 2033 adalah 2,9420 liter/detik. Sumber air yang digunakan adalah sungai.


Sign in / Sign up

Export Citation Format

Share Document