NMR WETTABILITY INDEX MEASUREMENTS AND METHODS COMPARED ON A VARIETY OF UNCONVENTIONAL SAMPLES

2021 ◽  
Author(s):  
Shaina Kelly ◽  
◽  
Ron J.M. Bonnie ◽  
Micheal J. Dick ◽  
Dragan Veselinovic ◽  
...  

Matrix wettability is a key driver in relative permeability and, hence, a critical factor controlling imbibition and drainage at UR fracture-matrix interfaces as well as enhanced oil recovery (EOR). In this study, we (1) adapt and apply the NMR-based wettability index (NWI) methodology of Looyestijn et al. (2006) to a variety of unconventional twin samples undergoing, respectively, spontaneous imbibition with oil-displacing-water and water-displacing-oil and (2) compare the robustness of this method among a variety of samples pairs and also to other NMR-based wettability methods. The samples analyzed cover a range of rock types, major formations, maturity and content of organic material. All displayed unique time-lapse wettability profiles and steady state NWI values. This work advances our previous works (Dick et al., 2019; Kelly et al., 2020) on this subject, where the viability of the methodology was established on end-member pilot samples, towards applicability as a UR SCAL method. The NWI methodology predicts T2 spectra using linear combinations (mixing) of “end-point” T2 spectra. The mixing ratios yielding the closest match to the measured spectra are then used to compute a wettability index. These mixing ratios were validated against (1) mass-balance calculations, (2) repeat experiments with heavy water (D2O) instead of H2O and (3) measured T1-T2 maps, enhancing confidence in the robustness of the method. Our comparisons show that alternative approaches representing the T2 spectra through a single mean T2 value or T2 peak-fit, fall short, especially in tight rocks where fast relaxation rate components tend to skew harmonic mean T2 values and also in samples where oil and water peaks are not clearly resolved. Full spectrum-based methods, akin to Looyestijn’s, appear more robust and stable over a much wider range of reservoir conditions. Repeated NMR acquisition throughout our long-term imbibition experiments shows that time-lapse NWI methodology probes the effects of rock properties, saturation changes, and injected fluid chemistry (enhanced oil recovery strategies) on wettability alteration. Additionally, this NWI study quantifies the wide variation in wettability among unconventional samples.

2021 ◽  
pp. 1-18
Author(s):  
Takaaki Uetani ◽  
Hiromi Kaido ◽  
Hideharu Yonebayashi

Summary Low-salinity water (LSW) flooding is an attractive enhanced oil recovery (EOR) option, but its mechanism leading to EOR is poorly understood, especially in carbonate rock. In this paper, we investigate the main reason behind two tertiary LSW coreflood tests that failed to demonstrate promising EOR response in reservoir carbonate rock; additional oil recovery factors by the LSW injection were only +2% and +4% oil initially in place. We suspected either the oil composition (lack of acid content) or the recovery mode (tertiary mode) was inappropriate. Therefore, we repeated the experiments using an acid-enriched oil sample and injected LSW in the secondary mode. The result showed that the low-salinity effect was substantially enhanced; the additional oil recovery factor by the tertiary LSW injection jumped to +23%. Moreover, it was also found that the secondary LSW injection was more efficient than the tertiary LSW injection, especially in the acid-enriched oil reservoir. In summary, it was concluded that the total acid number (TAN) and the recovery mode appear to be the key successful factors for LSW in our carbonate system. To support the conclusion, we also performed contact angle measurement and spontaneous imbibition tests to investigate the influence of acid enrichment on wettability, and moreover, LSW injection on wettability alteration.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1227-1235 ◽  
Author(s):  
K.. Sandengen ◽  
A.. Kristoffersen ◽  
K.. Melhuus ◽  
L. O. Jøsang

Summary We believe that osmosis has been overlooked as a possible mechanism for observed low-salinity enhanced-oil-recovery (EOR) effects. Osmosis can occur in an oil/water/rock system when injecting low-salinity water, because the system is full of an excellent semipermeable membrane—the oil itself. In the present work, water transport through oil films was visualized both in 2D micromodels and in sandstone cores imaged in a microcomputed tomography (CT). After treating these model systems with hexamethyldisilazane (HMDS) to render them more oil-wet, water became discontinuous, and it was possible to establish osmotic gradients. Either expansion or contraction of the connate water was observed, depending on the direction of the imposed salinity gradient. Because osmosis could be the underlying mechanism for low-salinity EOR, two changes in research strategy are proposed: Most importantly, the use of spontaneous-imbibition tests as evidence for wettability alteration in low-salinity water should be critically reinvestigated. This is because observed production could have stemmed from “osmotic expansion” of the connate water rather than wettability change. Second, much research focus should be shifted from sandstone reservoirs to fractured oil-wet carbonates. Osmosis potentially yields larger responses for the latter reservoir type, whereas from a mechanistic perspective the reason behind low-salinity EOR functioning in both sandstones and carbonates deserves further attention.


2020 ◽  
Vol 17 (3) ◽  
pp. 712-721 ◽  
Author(s):  
Saeb Ahmadi ◽  
Mostafa Hosseini ◽  
Ebrahim Tangestani ◽  
Seyyed Ebrahim Mousavi ◽  
Mohammad Niazi

AbstractNaturally fractured carbonate reservoirs have very low oil recovery efficiency owing to their wettability and tightness of matrix. However, smart water can enhance oil recovery by changing the wettability of the carbonate rock surface from oil-wet to water-wet, and the addition of surfactants can also change surface wettability. In the present study, the effects of a solution of modified seawater with some surfactants, namely C12TAB, SDS, and TritonX-100 (TX-100), on the wettability of carbonate rock were investigated through contact angle measurements. Oil recovery was studied using spontaneous imbibition tests at 25, 70, and 90 °C, followed by thermal gravity analysis to measure the amount of adsorbed material on the carbonate surface. The results indicated that Ca2+, Mg2+, and SO42− ions may alter the carbonate rock wettability from oil-wet to water-wet, with further water wettability obtained at higher concentrations of the ions in modified seawater. Removal of NaCl from the imbibing fluid resulted in a reduced contact angle and significantly enhanced oil recovery. Low oil recoveries were obtained with modified seawater at 25 and 70 °C, but once the temperature was increased to 90 °C, the oil recovery in the spontaneous imbibition experiment increased dramatically. Application of smart water with C12TAB surfactant at 0.1 wt% changed the contact angle from 161° to 52° and enhanced oil recovery to 72%, while the presence of the anionic surfactant SDS at 0.1 wt% in the smart water increased oil recovery to 64.5%. The TGA analysis results indicated that the adsorbed materials on the carbonate surface were minimal for the solution containing seawater with C12TAB at 0.1 wt% (SW + CTAB (0.1 wt%)). Based on the experimental results, a mechanism was proposed for wettability alteration of carbonate rocks using smart water with SDS and C12TAB surfactants.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Author(s):  
Chun Huh ◽  
Hugh Daigle ◽  
Valentina Prigiobbe ◽  
Maša Prodanović

Sign in / Sign up

Export Citation Format

Share Document