INVESTIGATION ON IMPACT OF BIODIESEL ON INJECTION PROCESS OF UNIT PUMP FUEL SYSTEM

2014 ◽  
Vol 13 (5) ◽  
pp. 1317-1325
Author(s):  
Yan Lei ◽  
Tao Qiu ◽  
Hefei Dai ◽  
Xuchu Li ◽  
Jing Peng
2021 ◽  
pp. 4-12
Author(s):  

Experimental studies have revealed a significant impact of deformation of Сommon Rail injector parts on the fuel supply process. High pressures alter the structure of the fuel supply cy-cle. Theforward front of the fuel supply cycle begins with the stage of unloading the deformed parts of the injector. The rear front of the fuel supply cycle ends with the stage of deformation of the injector parts. The calculated and experimental determination of cyclic fuel supply gave similar results. The developed method of determining the duration of the injection cycle stages creates a basis for experimental verification of mathematical models. Keywords: injector, Common Rail, diesel, fuel system, electronic control, needle, fuel injection


Author(s):  
Victor Anisimov ◽  
Anatoliy Yelenych

The fuel system largely determines the longevity of a diesel engine. This is due to the great influence of the fuel transfer process on its operating cycle. The operational characteristics, efficiency and ease of starting the engine are determined by the state of the engine power system, which is demanding for a diesel engine and requires careful regulation. The fuel injection process in a diesel engine largely depends on the design parameters of the fuel equipment. They change under the influence of external and internal factors. Reasonable standard terms and volumes of fuel equipment repairs are of great importance for the operation of diesel engines. These issues can be optimally solved only on the basis of statistical and experimental data on the nature and rate of growth, depending on the duration of operating conditions, superior types of wear on the working surfaces of the fuel system parts. The service life of fuel equipment is determined by the reliability and durability of precision pairs: plunger, pressure valves and injector nozzles. Operational defects of precision parts change by 12-17% such parameters of the injection process as cyclic feed, ignition timing, injection duration, maximum cycle pressure, can worsen the power and economic performance of a diesel engine. Therefore, the problem of improving the reliability and durability of precision pairs is relevant, the study of which is currently receiving much attention. Especially from precision pairs, pressure valves deserve attention. Their restoration after operation does not require expensive equipment and energy consumption, but the parameters of diesel engines depend to a large extent on their operation. Improving the injection characteristics of fuel equipment that has served its service life with a change in the parameters of the injection valve in the conditions of repair and maintenance workshops is quite affordable.


2020 ◽  
Vol 7 (3) ◽  
pp. 37-44
Author(s):  
KONSTANTIN NAPREENKO ◽  
◽  
ROMAN SAVELEV ◽  
ALEKSEY TROFIMOV ◽  
ANNA LAMTYUGINA ◽  
...  

The article discusses methods for determining the hydraulic resistance of units of an accident-resistant fuel system. A detailed description of the need to create such fuel systems for modern helicopters is given. The development of such systems today is impossible without the use of the method of mathematical modeling, which allows to qualitatively solve problems arising in the design process. To obtain accurate research results, it is necessary to have a complete description of all elements and assemblies of the system. Methods for determining the hydraulic characteristics of AFS elements using the drag coefficient, reference literature and CFD codes are considered. As the investigated AFS units, a drain valve and burst fitting were studied in the article. A hydraulic calculation of these AFS elements ware performed, the simulation results are presented in the ANSYS CFX software package. Also as the calculation results of bursting fitting, the pressure distribution fields of full and static pressure, velocity and streamlines are also shown. An experimental setup for validating the results obtained using the mathematical modeling method is considered, as well as a methodology for conducting a full-scale experiment to determine the hydraulic resistance of the unit. Materials have been prepared for inclusion in a one-dimensional mathematical model of an accident-resistant fuel system.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Alloy Digest ◽  
2015 ◽  
Vol 64 (1) ◽  

Abstract Sandvik Pressurfect is an austenitic chromium-nickel stainless steel with low carbon content used for high-pressure gasoline direct injection (GDI) fuel system. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SS-1195. Producer or source: Sandvik Steel Company.


Sign in / Sign up

Export Citation Format

Share Document