scholarly journals PRODUCTION PLANNING RAMBAK CRACKER TO MEET DEMAND AT UMKM DWI JAYA KENDAL

2021 ◽  
Vol 1 (01) ◽  
pp. 6
Author(s):  
Dicky Hendra Saputra ◽  
Andre Sugiyono ◽  
Brav Deva Bernardhi

UMKM Dwi jaya merupakan suatu perusahaan kerupuk rambak yang terletak di Jl. Kyai Guru Sulaiman, Pegandon, Kabupaten Kendal, Jawa Tengah 51357. UMKM Dwi Jaya membuat dua produk yaitu kerupuk rambak sapi dan kerupuk rambak kerbau. Di UMKM Dwi jaya sendiri menggunakan sistem make to stock yaitu membuat suatu produk akhir untuk disimpan dan kebutuhan konsumen akan diambil dari persediaan di gudang. Tingkat persediaan tergantung pada waktu respon permintaan pelanggan dan tingkat vabilitas permintaan.Perusahaan tersebut memiliki sebuah masalah yaitu jumlah permintaan yang dihasilkan lebih banyak dari jumlah produksi yang ada sehingga menyebabkan kerupuk rambak tersebut mengalami kekurangan, Tindakan yang dapat dilakukan untuk mengatasi permasalahan tersebut yaitu membuat rencana produksi agar dapat memenuhi permintaan tepat waktu, tepat jumlah dengan biaya minimum yaitu dengan melakukan peramalan produksi dengan menggunakan Exponential smoothing kemudian dilanjutkan dengan menggunakan perencaaan agregat dengan menggunakan metode heuristik dan penjadwalan  produksi menggunakan Master Production Schedule (MPS) sesuai dengan metode heuristik yang terpilih, Setelah itu MPS  akan diverifikasi dengan menggunakan menggunakan Rough Cut Capacity Planning (RCCP) agar bisa mengetahui layak tidaknya jadwal dari MPS tersebut. Lalu dilakukan rekomendasi perbaikan untuk mengurangi biaya produksi, biaya simpan dan biaya tenaga kerja dengan menggunakan metode-metode yang tepat.Dari hasil penelitian, forecasting dengan menggunakan metode Exponential smoothing dan metode moving average menghasilkan peramalan terbaik total permintaan untuk kerupuk rambak sapi sebesar 88625 gram dan untuk kerupuk rambak kerbau sebesar 89390,52 gram, pada Aggregate Planning dengan menggunakan metode heuristik didapatkan hasil dengan solusi terbaik adalah solusi pengendalian persediaan (level strategy) total biaya terendah sebesar Rp. 0. (MPS) sesuai dengan solusi terbaik pada Aggregate Planning dan sesuai dengan kapasitas mesin dan pekerja yang telah di verifikasi menggunakan Rough Cut Capacity Planning (RCCP)

2021 ◽  
Vol 31 (1) ◽  
pp. 14
Author(s):  
Dewi Sri

Introduction: Material Requirement Planning (MRP) is a technique or a logical procedure to translate the Master Production Schedule (MPS) of the finished goods or end item into the net requirements for some of the components needed to implement the MPS. MRP is used to determine the amount of material needs to support the Master Production Schedule and when the material needs to be scheduled.Methods: The study is conducted on 13 August 2018 until 12 September 2018 at the installation Nutrition RSIA Kendangsari Merr Surabaya. Collecting data in this study using several methods, including: observation- This stage is conducted in all parts related to the object of study, starting from the Purchase Order (PO) by a head cook up to raw material stored in the storage, discussion- author interviews and collects data to communicate and discuss with the respondents. Respondents in this study are the head of the nutrition unit and head cook of RSIA who have the authority doing the purchasing.Results: Planning of procurement of raw materials to the menu rawon in RSIA can use the Exponential Smoothing method. The discussion has compared two methods of forecasting and the results are consistent with the demand’s patterns of Simple Moving Average method, Exponential Smothing. Forecasting has the lowest error rate by using Exponential Smoothing. The second conclusion is a technique of determining the appropriate Material Requirement Planning in raw material procurement to menu rawon in RSIA is using Lot for Lot.


2018 ◽  
Vol 20 (1) ◽  
pp. 40-47
Author(s):  
Abdul Rahim Matondang ◽  
Widodo Widodo

Production system take an important role in industries, especially in manufacturing industries. This role determine the keys of successful company. Production process is an activity which produce finished product from raw material that involve machine, energy, and technique knowledge. Production process is real activity and can be seen by human being. The problems those always be faced in indutries management’s are the arrangement of production schedule, such lack of inventory or overstock once the settlement of production process isn’t on time. Production planning and control is activity to determine what product that will be produced, how many product that will be produced and how many labors needed in production processes. By using production planning and control’s method, those problems can be minimalized. Aggregate planning is one of production planning a.nd control’s method. By using this method, production planning could be done by using unit of replacement product so that the output of this planning isn’t declared in individual product. So, the output of aggregate planning isn’t planning in form of individual product but aggregate’s product. There are some strategies on aggregate planning such as pure strategy on aggregate planning and mixed strategy on aggregate planning. In this research, method of aggregate planning that used is optimization approach by linier rule. This method used to make long term planning and middle term planning. Long term planning consists of product forecasting and aggregate planning. The middle term planning consist of master production schedule and rough cut capacity planning. The result of this research is capacity needed and capacity available to determine which work center is drum and which isn’t. Conclusion of this research that capacity of each work center in perioad january to december 2018 is non drum. This indicate the good scheduling in capacity planning.


2012 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Iffan Maflahah ◽  
Machfud Machfud ◽  
Faqih Udin

Planning and production control are important factors to determine the efficiency derived through proper managementof raw material supply of fresh fruits, production planning and master production schedule. This research aimed to developthe aggregate production planning model, and master production schedule model for juice production from fresh fruit, while also considered the perishability of the fresh fruit. There were several methods applied in the works, namely autoregressive integrated moving average (ARIMA) for forecasting of raw material product sale, mathematical model for raw material supply, linear programming for production planning and prospective production scheduling to develop master production schedule. This research developed software for decision support system called RP_JUS. The results showed that all raw material damage was distributed exponentially. Decision Support Model of Production Schedule for Fresh Fruit Juice can be applied to the processing indudtries that use fresh fruit.


2021 ◽  
Vol 15 ◽  
pp. 8-13
Author(s):  
Mohamed K. Omar ◽  
Muzalna Mohd-Jusoh ◽  
Mohd Omar

This paper considers the hierarchical production planning (HPP) concept to solve a production planning problem in the process industry in a fuzzy environment. The adopted fuzzy HPP consists of two levels in which a fuzzy aggregate production planning (FAPP) model is developed in the first level, and then a fuzzy disaggregate production planning (FDPP) model is developed at the second level. The FAPP was reported by Omar et al. [1] and therefore, this research paper discusses the FDPP model. We formulated the disaggregate model as a fuzzy mixed-integer linear programming model that aims to develop a master production schedule in which numbers of optimal batches are developed in presence of setup time. In addition, we evaluate the performance of the FMILP by comparing its results with a previously reported approach. The findings indicate that significant cost savings were achieved by adopting the fuzzy mathematical programming approach.


Author(s):  
Shelvy Kurniawan ◽  
Steven Sanjaya Raphaeli

Based on the data, there were still shortages of production from year to year and demand wereunstable in motorcycle chains manufacturer in Indonesia. To overcome these problems, the purpose of this research was to make production planning and inventory control consisting of forecasting, aggregate planning, Master Production Schedule (MPS), and Material RequirementsPlanning (MRP). Forecasting used the additive decomposition method (average of all data), multiplicative decomposition (centered on moving average), and winter method (additive and multiplicative). Aggregate planning used chase strategy, level strategy, and transportation model. Moreover, MRP used lot for lot, Economic Order Quantity (EOQ), and Periodic Order Quantity (POQ) methods. The test shows several results. First, the best forecasting is additive decomposition (average of all data) with MAD value of 3.033,57, MSE with 13.590.490,and MAPE with 10,083%. Second, the best aggregate planning is transportation model with the total cost of Rp7.708.398.390,00. Last, the best MRP method is the lot for lot with total cost Rp7.162.567.653,00.


SINERGI ◽  
2016 ◽  
Vol 20 (2) ◽  
pp. 157 ◽  
Author(s):  
Supriyadi Supriyadi ◽  
Riskiyadi Riskiyadi

Persaingan industri kertas semakin ketat dengan banyaknya industri atau perusahaan yang bergerak dalam industri yang sama dalam bersaing mendapatkan dan mempertahankan pelanggan. Permasalahan yang terjadi saat ini di CaCO3 Section pada Perusahaan Kertas adalah belum tersedianya jadwal induk produksi (Master Production Schedule = MPS) sebagai dasar penentuan proses produksi IKS-Filler yang menyebabkan kekurangan persediaan sehingga kualitas kertas cacat dan perusahaan menderita kerugian yang cukup besar. Tujuan penelitian ini adalah menganalisa peramalan yang sesuai untuk diterapkan, merencanakan produksi dengan biaya terendah, penjadwalan produksi sebagai dasar proses produksi dan menghitung persediaan pengaman. Metode yang digunakan adalah peramalan (moving average), perencanaan produksi (level production plan, chase plant, dan intermediate plan), penjadwalan produksi (MPS trial and error) dan menganalisis jumlah persediaan pengaman (safety stock) menggunakan distribusi normal. Dari hasil pengolahan data menyimpulkan bahwa peramalan yang sesuai adalah Moving Average (n = 3) dengan nilai MAD terkecil dan tracking signal yang tidak menyimpang. Biaya terendah perencanaan produksi menggunakan metode intermediate plan sebesar 56,5 USD. Jadwal Induk Produksi mempunyai persediaan akhir 191 Ton dan rata-rata produksi tiap minggu sebesar 1,852 Ton. Jumlah persediaan pengaman dengan tingkat layanan 95% sebesar 101,75 Ton.


2020 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Tigar Putri Adhiana ◽  
Indro Prakoso ◽  
Nidya Pangestika

Capacity planning in a company's production process needs to be considered so that the products produced meet consumer demand. PT X, is a manufacturing company that focuses on tire production. One type of large-sized tire product that has the highest demand is the ABC type with a sTabel production amount per month and demand that goes up every year. In terms of fulfilling customer demand, especially requests for large tires with type ABC, PT X often has difficulty in meeting consumer demand, this happens because the capacity of the machine is not available. Therefore, the existing production capacity must be evaluated to find out whether the available capacity is sufficient with the required capacity. To analyze this problem, the Rough Cut Capacity Planning (RCCP) method, this method is to analyze and test the determination of capacity in the master production schedule. Calculation of available capacity and capacity required in a year is carried out for the process carried out, namely: Building, Spreading and venting, curing, and Trimming. For the building and trimming process, it is found that the decision of the acupacity is fulfilled, while the Spreading and venting process is required to add 1 machine, and the curing process is required to add the machine according to the number of requests per month. From these results it can be given a proposal that needs to be considered in meeting the capacity to meet consumer needs while still paying attention to production costs.


2010 ◽  
Vol 1 (2) ◽  
pp. 112
Author(s):  
Eti Kristinawati

Every company always tries to serve all customer's demand. This need a good planning and schedulling to keep flow production. PT Binarenata is one company which produce many kind of metal products. Currently, this company has problem in material handling of product and lack of another product. To solve this problem, this company made Master Produclion Schedule using disagregat method to duet he fluctuation demand. From analysis data can be found the number of worker with minimum cost in the next production planning is about 966 persons with cost about Rp. 49.431.714.000,00. Implementing this Master Production Schedule can reduce production cost about Rp. 5.829.363.807,00 or 76,3 %


Sign in / Sign up

Export Citation Format

Share Document