Experimental Study on Performance and Emission Characteristic of Diesel Engine using Sunflower oil Biodiesel Blends

2020 ◽  
Vol 38 (8A) ◽  
pp. 1169-1177
Author(s):  
Ghassan S. Ali Alrkaby ◽  
Abed AL-Kadim M. Hassan

Biodiesel fuel is a liquid biofuel produced by chemical process form new and used phytogenic oils, animal fats. Biodiesel fuels can be utilization alone or mixing with the pure diesel at different proportion.  In the present work a diesel engine type (FIAT) , four cylinder, variable speed, direct injection was operated by sunflower oil methyl ester , biodiesel at different blend ratio . five different ratio of biodiesel blends 10%, 20%, 30%, 40%, and 50% by volume is used in this study and compared with using of pure diesel at variable loads and variable engine speed. The effect of biodiesel additive to pure diesel on the performance and emission characteristics. Adjust the engine speed at 1100 rpm by means of the engine tachometer and digital tachometer, and reduce the load gradually until the engine speed increased to 1900 rpm automatically by increments of 200 rpm. The BSFC for B20 It seems less than the other ratio of biodiesel blends, and the BTE of biodiesel blends is lower than the pure diesel but the B20 having high BTE in comparison with the other biodiesel- diesel mixtures. the UHC and CO emission for B20 is less than the biodiesel blends and pure diesel, but the NOX emission for B20 is lower than the other biodiesel blends and higher than pure diesel. The present work shows the B20 relatively is a better performance and combustion characteristic than that biodiesel blends ratio.          

Author(s):  
Cheah Yi Linn ◽  
Mohd Radzi Abu Mansor ◽  
Zul Ilham

Alternative fuels for diesel engines have become highly important in the automotive industry due to the depleting fossil fuel sources and increased environmental concerns. Biodiesel fuel has a good combustion characteristic because of their long-chain hydrocarbon structure but the higher density and viscosity of the fuel can contribute to several engine problems such as low atomization, carbon deposit formation and injector clogging. The production of biodiesel with additives can help with the performance and emissions of diesel engines. There are many types of additives on the market but the extent of the additives on engine performance is unknown and lack of research has been done in studying the performance, emissions and fuel consumption together with B100 biodiesel. In this research, there are five types of B100 palm oil methyl ester biodiesel with various additive compositions need to be identified. The density, viscosity and calorific value of biodiesel samples were measured to study the thermo-physical properties as a simulation input. Simulation of the combustion engine is conducted using CONVERGE CFD software; based on single-cylinder, direct injection, YANMAR TF90 diesel engine parameters to study on the combustion characteristics and exhaust emissions. The simulation results were compared with the experiment results. From the simulations, biodiesel with diethyl ester and n-butanol additives give better results compared to other additives because the present of n-butanol PME is believed to reduce CO, CO2 and NOx emissions while diethyl ether can improve the spray characteristics when it blends with B100 biodiesel due to its low density and viscosity.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


Author(s):  
Donggon Lee ◽  
Kyusoo Jeong ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

This study describes the effects of two-stage combustion (TSC) strategy on combustion and emission characteristics in 4 cylinder common-rail direct injection (CRDI) diesel engine fueled with biodiesel blends. In the present work, to investigate the combustion and emission characteristics, the experiments were performed under various injection pressures, first injection quantity and first injection timing of TSC strategy at constant engine speed and engine load. In addition, conventional diesel fuel (ULSD) was used to compare with biodiesel blends. The experimental results show that combustion of biodiesel blends is stable for various test conditions regardless of blending ratio, and indicated specific fuel consumption (ISFC) was increased as biodiesel blending ratio increased. In the emission characteristics, biodiesel blends generated lower indicated specific nitrogen oxides (IS-NOx) and indicated specific soot (IS-Soot) emissions compared to those of ULSD when the first injection quantity increased.


2020 ◽  
Vol 8 (5) ◽  
pp. 3950-3954

Alternative fuel sources are needed to be developed to meet the escalating demand for fossil fuels. Also from an environmental point of view, these most modern resources of fuels must be environment-friendly. The rapidly increasing consumption of fossil fuel and petroleum products has been a matter of concern for many countries which imports more crude oil. So, there is necessary for the development of new energy sources. The biomass, edible oil, inedible oils from plants and fish fat oil are imperatives and seen to be a potential substitute for diesel fuel. Acid and Base catalyzed transesterification is the most acceptable process for biodiesel production. In this project, an attempt towards finding the effect of alternate fuels as a substitute over diesel and reduce its consumption to lessen the environmental effects. Biodiesel has been extensively used in diesel engines as a partial substitute in the past few decades. The present investigation is carried out with blending up fish oil biodiesel with diesel in varying proportions to test out the emission and performance characteristics of direct injection single cylinder, four strokes, and air-cooled diesel engine. The fish oil biodiesel was produced by the transesterification process and obtained fish oil biodiesel blended with diesel fuel with various propagations of B20, B50, B75 & B100. These blended fuels were further investigated in a diesel engine with variable speeds such as 1000rpm, 1250rpm, 1500rpm, 1720rpm, 2000rpm 2250rpm & 2500rpm. In this comparative study, the effects of fish oil biodiesel fuel blends are compared and evaluated with pure diesel.


2015 ◽  
Vol 1115 ◽  
pp. 480-483
Author(s):  
Khairil ◽  
Sulaiman Thalib ◽  
Dan Turmizi

Kepayang is a plant commonly found in tropical regions especially in Aceh, which has not been optimally used by local people. Based on traditional processes, kepayang seeds are potentially capable of producing oil. The objective of this research is to examined the effects of specific fuel consumption, power generation, and the thermal efficiency on engine performance by using kepayang seeds oil. The problem will be evaluated the effect of variations of biodiesel fuel (B-0, B-10 and B-20) and variation engine rotation on the diesel engine performance. In order to perform this research, the Yanmar TS-50 engine which had rotation of 2400 rpm and maximum power of 2 kW was selected. By examining the result of the research it was concluded that there were not significant effects of varied fuel consumption on the low speed (1000 rpm to 1800 rpm) engine rotation. However for engine speed more than 1800 rpm there were somewhat effects of them on engine performance. It is evident that at the engine rotation of 2000 rpm, the fuel consumption of biodiesel (B-20) and the power generated were lower than compare to biodiesel (B-10 and B-0). On the other hand, the thermal efficiency for biodiesel (B-20) was higher than compared to other biodiesel (B-10 and B-0).


2013 ◽  
Vol 845 ◽  
pp. 61-65 ◽  
Author(s):  
Amir Khalid ◽  
Norrizal Mustaffa ◽  
Ahmad Jais Alimin ◽  
Bukhari Manshoor ◽  
Siti Mariam Basharie ◽  
...  

Crude palm oil (CPO) is one of the vegetable oil that has potential for use as a fuel in diesel engine. Despite years of improvement attempts, the high viscosity and the major chemically bound oxygen component in the biodiesel fuel play as a key element during combustion process. Purpose of this study is to explore how significant the effect of preheated biodiesel blends on the engine performance and emission. The blending of biodiesel was varied from 5vol%(B5)~ 45vol%(B45) and preheated fuel temperature from 40°C~60°C. The engine speed was varied from 1500 rpm~3000 rpm and the load test conditions of 100% are considered. The performances parameter study of diesel engine in brake power, torque and flywheel torque are described together with the emissions parameter such as opacity, hydrocarbon (HC), nitrogen oxide (NOx), carbon oxide (CO), carbon dioxide (CO2) and oxygen (O2). Under high load condition, preheated biodiesel blends were found enhancing the combustion process, resulting in better performances. Increased preheated fuel temperature, higher in torque value and brake power increases significantly as the engine speed increases.


La Granja ◽  
2020 ◽  
Vol 32 (2) ◽  
pp. 19-29
Author(s):  
Mehmood Ali ◽  
Saqib Jamshed Rind

This paper presents the production of biodiesel from indigenous species of Jatropha curcas and Neem (Azadirachta indica) oils, then its engine performance and emission characteristics of B10 blends measured at 1000 rpm. Biodiesel production yields were found 90% and 68% by weight from Jatropha curcas and Neem (Azadirachta indica), respectively. Three prepared biodiesel blends were 10% Neem biodiesel (NB10), 10% Jatropha biodiesel (JB10) and 5% Jatropha + 5% Neem biodiesels (NJB10). The engine emission test showed less carbon monoxide production from NB10 (94 +- 2.15 ppm), followed by JB10 (100+- 2.44ppm) and NJB10 (121 +- 3.65ppm) as compared to diesel (135+- 2.18ppm). However, the carbon dioxide emissions were found higher due to the better combustion characteristics of biodiesel blends as NB10 (3.21%), JB10 (3.06%) and NJB10 (2.53%) than diesel (2.13%) by volume. The reduced amounts of sulphur dioxide (SO2) emissions were found with blended biodiesel fuel in comparison to mineral diesel. Nitrogen dioxide (NO2) emissions were 5 ppm from diesel at 73 C exhaust temperature, while it was increased by using blended biodiesel, to 8 ppm with NB10 due to higher exhaust temperatures 85;33 C. The measured engine power and torque produced from the blended biodiesel samples were slightly lower than the conventional diesel by 12% and 7.7%, respectively. The experimental results showed that an engine performance and emission characteristic of Neem biodiesel (NB10) was better as compared to other biodiesel blends.


Author(s):  
Pankajkumar G. Patel ◽  
Kintuben R. Patel ◽  
Hirenkumar B. Parikh

An experiment investigation is conducted to evaluate the use of sunflower oil methyl esters (bio-diesels) of Greek origin as supplements in the diesel fuel at blend ratios of 10/90 and 20/80, in a fully instrumented, six-cylinder, turbocharged and after-cooled, direct injection (DI),Mercedes –Benz, mini-bus diesel engine installed at the author`s laboratory. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The diesel fuel and two bio-diesels are determined and compared.


Sign in / Sign up

Export Citation Format

Share Document