scholarly journals A Visual Enhancement Quality of Digital Medical Image Based on Bat Optimization

2021 ◽  
Vol 39 (10) ◽  
pp. 1550-1570
Author(s):  
Kholood Hussin ◽  
Ali Nahar ◽  
Hussain Khleaf
2014 ◽  
Vol 643 ◽  
pp. 237-242 ◽  
Author(s):  
Tahari Abdou El Karim ◽  
Bendakmousse Abdeslam ◽  
Ait Aoudia Samy

The image registration is a very important task in image processing. In the field of medical imaging, it is used to compare the anatomical structures of two or more images taken at different time to track for example the evolution of a disease. Intensity-based techniques are widely used in the multi-modal registration. To have the best registration, a cost function expressing the similarity between these images is maximized. The registration problem is reduced to the optimization of a cost function. We propose to use neighborhood meta-heuristics (tabu search, simulated annealing) and a meta-heuristic population (genetic algorithms). An evaluation step is necessary to estimate the quality of registration obtained. In this paper we present some results of medical image registration


2007 ◽  
Vol 07 (04) ◽  
pp. 663-687 ◽  
Author(s):  
ASHISH KHARE ◽  
UMA SHANKER TIWARY

Wavelet based denoising is an effective way to improve the quality of images. Various methods have been proposed for denoising using real-valued wavelet transform. Complex valued wavelets exist but are rarely used. The complex wavelet transform provides phase information and it is shift invariant in nature. In medical image denoising, both removal of phase incoherency as well as maintaining the phase coherency are needed. This paper is an attempt to explore and apply the complex Daubechies wavelet transform for medical image denoising. We have proposed a method to compute a complex threshold, which does not depend on any assumed model of noise. In this sense this is a "universal" method. The proposed complex-domain shrinkage function depends on mean, variance and median of wavelet coefficients. To test the effectiveness of the proposed method, we have computed the input and output SNR and PSNR of various types of medical images. The method gives an improvement for Gaussian additive, Speckle and Salt-&-Pepper noise as well as for the mixture of these noise types for a range of noisy images with 15 db to 30 db noise levels and outperforms other real-valued wavelet transform based methods. The application of the proposed method to Ultrasound, X-ray and MRI images is demonstrated in the experiments.


Author(s):  
Naoufel Khayati ◽  
Wided Lejouad-Chaari

In this paper, we present a distributed collaborative system assisting physicians in diagnosis when processing medical images. This is a Web-based solution since the different participants and resources are on various sites. It is collaborative because these participants (physicians, radiologists, knowledgebasesdesigners, program developers for medical image processing, etc.) can work collaboratively to enhance the quality of programs and then the quality of the diagnosis results. It is intelligent since it is a knowledge-based system including, but not only, a knowledge base, an inference engine said supervision engine and ontologies. The current work deals with the osteoporosis detection in bone radiographies. We rely on program supervision techniques that aim to automatically plan and control complex software usage. Our main contribution is to allow physicians, who are not experts in computing, to benefit from technological advances made by experts in image processing, and then to efficiently use various osteoporosis detection programs in a distributed environment.


Author(s):  
S. Anand

Medical image enhancement improves the quality and facilitates diagnosis. This chapter investigates three methods of medical image enhancement by exploiting useful edge information. Since edges have higher perceptual importance, the edge information based enhancement process is always of interest. But determination of edge information is not an easy job. The edge information is obtained from various approaches such as differential hyperbolic function, Haar filters and morphological functions. The effectively determined edge information is used for enhancement process. The retinal image enhancement method given in this chapter improves the visual quality of the vessels in the optic region. X-ray image enhancement method presented here is to increase the visibility of the bones. These algorithms are used to enhance the computer tomography, chest x-ray, retinal, and mammogram images. These images are obtained from standard datasets and experimented. The performance of these enhancement methods are quantitatively evaluated.


2011 ◽  
Vol 58-60 ◽  
pp. 2370-2375
Author(s):  
Wei Li Ding ◽  
Feng Jiang ◽  
Jia Qing Yan

Magnetic Resonance Imaging (MRI) has been widely used in clinical diagnose. Segmentation of these images obtained by MRI is a necessary procedure in medical image processing. In this paper, an improved level set algorithm was proposed to optimize the segmentation of MRI image sequences based on article [1]. Firstly, we add an area term and the edge indicator function to the total energy function for single image segmentation. Secondly, we presented a new method which uses the circumscribed polygon of the previous segmentation result as the initial contour of the next image to achieve automatic segmentation of image sequences. The algorithm was tested on MRI image sequences provided by Chuiyanliu Hospital, Chaoyang District of Beijing; the results have indicated that the proposed algorithm can effectively enhance the segmentation speed and quality of MRI sequences.


Author(s):  
Urvashi Sharma ◽  
Meenakshi Sood ◽  
Emjee Puthooran

A region of interest (ROI)-based compression method for medical image datasets is a requirement to maintain the quality of the diagnostically important region of the image. It is always a better option to compress the diagnostic important region in a lossless manner and the remaining portion of the image with a near-lossless compression method to achieve high compression efficiency without any compromise of quality. The predictive ROI-based compression on volumetric CT medical image is proposed in this paper; resolution-independent gradient edge detection (RIGED) and block adaptive arithmetic encoding (BAAE) are employed to ROI part for prediction and encoding that reduce the interpixel and coding redundancy. For the non-ROI portion, RIGED with an optimal threshold value, quantizer with optimal [Formula: see text]-level and BAAE with optimal block size are utilized for compression. The volumetric 8-bit and 16-bit standard CT image dataset is utilized for the evaluation of the proposed technique, and results are validated on real-time CT images collected from the hospital. Performance of the proposed technique in terms of BPP outperforms existing techniques such as JPEG 2000, M-CALIC, JPEG-LS, CALIC and JP3D by 20.31%, 19.87%, 17.77%, 15.58% and 13.66%, respectively.


Sign in / Sign up

Export Citation Format

Share Document