Removal of Tetracycline Antibiotic from Wastewater by Fenton Oxidation Process

2021 ◽  
Vol 39 (2A) ◽  
pp. 260-267
Author(s):  
Mahdi H. Mahdi ◽  
Thamer J. Mohammed ◽  
Jenan A. Al-Najar

This study aimed to remove the antibiotic tetracycline from a sample of synthetic wastewater using an advanced oxidation process by Fenton's reagent treatment. Central Composite Design (CCD) software was used to reduce the number of tests required to remove tetracycline. The independent variables identified in batch oxidation experiments are the concentrations of tetracycline (40–250 mg / L), hydrogen peroxide (20–600 mg / L), and Fe(II) (0–60 mg / L). The rate of tetracycline degradation was significantly influenced by the concentration of hydrogen peroxide and tetracycline. The reaction time required for tetracycline removal was determined to be 15 minutes. The optimal ratio of independent variants leading to complete degradation 100% of tetracycline was hydrogen peroxide / Fe2 + / tetracycline 310/30/145 mg / l.

2019 ◽  
Vol 9 (3) ◽  
pp. 213-224
Author(s):  
Quynh Thi Phuong Tran ◽  
Chi-Hsu Hsieh ◽  
Tung-Yu Yang ◽  
Hsin-hsin Tung

Abstract Isopropyl alcohol (IPA) is a common waste solvent from the semiconductor and optoelectronic manufacturing industries. The current study assesses the feasibility of microwave-induced catalytic oxidation process for synthetic IPA wastewater. The effect of three independent variables, including oxidant (hydrogen peroxide), initial IPA concentration, and dosage of catalyst (granular activated carbon, GAC) on the IPA removal efficiency, were investigated and optimized by response surface methodology based on central composite design. The estimated optimal working conditions were as follows: [H2O2] <0.132 M, GAC dosage = 108–123 g/L, and initial [IPA] = 0.038–0.10 M. The findings indicated that the dosage of GAC and the initial IPA concentration strongly affected the overall IPA removal. The values of R2 = 0.9948 and adjusted R2 = 0.9901 demonstrated that the response variability could be explained by the model expressing a satisfactory quadratic fit. Finally, the H2O2/GAC/MW process showed a faster and higher IPA removal rate than other processes tested.


2019 ◽  
Vol 53 (22) ◽  
pp. 13323-13331 ◽  
Author(s):  
Kiranmayi P. Mangalgiri ◽  
Samuel Patton ◽  
Liang Wu ◽  
Shanhui Xu ◽  
Kenneth P. Ishida ◽  
...  

Author(s):  
André F. Rossi ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira

AbstractFenton’s reaction is an advanced oxidation process where, classically, hydrogen peroxide is the oxidizing agent and an iron catalyst promotes the formation of hydroxyl radicals (•OH). Among the studies that evaluated different metals as Fenton-like catalysts, our group of investigation has recently used cerium-based solids as heterogeneous catalysts in slurry reaction and, in this work, iron sludge coming from an industrial Fenton’s reactor used for the wastewater depuration of a detergent production factory is being appraised while treating a synthetic effluent containing 0.1 g.L


Author(s):  
André Gadelha de Oliveira ◽  
Jefferson Pereira Ribeiro ◽  
Juliene Tome de Oliveira ◽  
Denis De Keukeleire ◽  
Maíra Saldanha Duarte ◽  
...  

AbstractThis study investigates the use of an advanced oxidation process (AOP) for removal of the pesticide chlorpyrifos in a recirculated system, especially considering the effects of temperature, hydrogen peroxide dosage, pH, pesticide concentration and added inorganic anions. The results indicate that a temperature of 45 °C gave the best performance using only UV-radiation, while for the UV/H


Sign in / Sign up

Export Citation Format

Share Document