scholarly journals The Pocket Pindar The Antinoupolis Codex and Pindar’s Readership in Graeco-Roman Egypt

Author(s):  
Mark de Kreij

The parchment codex published as P.Ant. II 76 and III 212 contains remains of Pindar’s Olympians 5 and 6 along with scanty traces of marginal notes. Further conservation and study allows us to now roughly reconstruct the format of the original manuscript, and new imaging techniques have revealed better readings of the marginalia. In this speculative article, I explore the Pindar codex’s form, content, and the particular context of Antinoupolis. In the process, I touch upon the question of Pindar’s popularity in Roman Egypt, book production in Antinoupolis, and the form and function of the early codex. Taking all available evidence into account, I propose that we might have a pocket codex of Pindar’s complete works – perhaps intended for casual reading.  

2014 ◽  
Vol 88 (4) ◽  
pp. 633-635 ◽  
Author(s):  
Imran A. Rahman ◽  
Selena Y. Smith

‘Virtual paleontology’ entails the use of computational methods to assist in the three-dimensional (3-D) visualization and analysis of fossils, and has emerged as a powerful approach for research on the history of life. Three-dimensional imaging techniques allow poorly understood or previously unknown anatomies of fossil plants, invertebrates, and vertebrates, as well as microfossils and trace fossils, to be described in much greater detail than formerly possible, and are applicable to a wide range of preservation types and specimen sizes (Table 1). These methods include non-destructive high-resolution scanning technologies such as conventional X-ray micro-tomography and synchrotron-based X-ray tomography. In addition, form and function can be rigorously investigated through quantitative analysis of computer models, for example finite-element analysis.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Frank Stahnisch

AbstractIn theoretical accounts of the neurosciences, investigative research programs have often been separated into the morphological and physiological tradition. The morphological tradition is seen as describing the structure and form of the external and interior parts of the brain and spinal cord. The physiological tradition is interpreted as a compilation of those approaches which investigate cerebral functions particularly in their dynamic interactions. It must be regarded as an open question, though, whether the distinction between the morphological and physiological tradition in modern clinical and basic neuroscience has now become obsolete with the most recent neuroimaging techniques, such as fMRI, PET scans, SPECT, etc. Taken at face value, these new imaging techniques seem to relate, overlap, and even identify the anatomical with the functional substrate, when mapping individual patterns of neural activity across the visually delineated morphological structures. The particular focus of this review article is primarily on the morphological tradition, beginning with German neuroanatomist Samuel Thomas Soemmerring and leading to recent approaches in the neurohistological work of neuroscience centres in the United States and morphophysiological neuroimaging techniques in Canada. Following some landmark research steps in neuroanatomy detailed in the first section, this article analyzes the changing trajectories to an integrative theory of the brain in its second section. An examination of the relationship between form and function within the material culture of neuroscience in the third and final part, will further reveal an astonishingly heterogeneous investigative and conceptual terrain.


2018 ◽  
Author(s):  
Todd A. Schoborg ◽  
Samantha L. Smith ◽  
Lauren N. Smith ◽  
H. Douglas Morris ◽  
Nasser M. Rusan

ABSTRACTUnderstanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here we present an optimized method for non-invasive imaging of Drosophila melanogaster at high resolution using micro computed tomography (μ-CT). Our method allows for rapid processing of intact animals at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use the power of μ-CT imaging to model human diseases through the characterization of microcephaly in the fly. Our work demonstrates that μ-CT is a versatile and accessible tool that complements standard imaging techniques, capable of uncovering novel biological mechanisms that have remained undocumented due to limitations of current methods.


Open Biology ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 190087 ◽  
Author(s):  
Dhananjay Chaturvedi ◽  
Sunil Prabhakar ◽  
Aman Aggarwal ◽  
Krishan B. Atreya ◽  
K. VijayRaghavan

Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


2011 ◽  
Author(s):  
Scott Fluke ◽  
Russell J. Webster ◽  
Donald A. Saucier

2013 ◽  
Author(s):  
Joshua Wilt ◽  
William Revelle

Sign in / Sign up

Export Citation Format

Share Document