scholarly journals Adsorptive Removal of Malachite Green from Aqueous Solution Using Low Cost Adsorbent

Author(s):  
B. M. MARMAT ◽  
A. S. SALUNKE ◽  
N. N. GUND ◽  
J. P. SONAR ◽  
S. A. DOKHE ◽  
...  
2010 ◽  
Vol 175 (1-3) ◽  
pp. 844-849 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Huei-Ru Chen

2020 ◽  
Vol 15 (2) ◽  
pp. 525-537 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Bakri Rio Rahayu ◽  
Risfidian Mohadi ◽  
Addy Rachmat ◽  
...  

The preparation of CuAl LDH and biochar (BC) composite derived from rice husk and its application as a low-cost adsorbent for enhanced adsorptive removal of malachite green has been studied. The composite was prepared by a one-step coprecipitation method and characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Brunauer-Emmett-Teller (BET), and Scanning Electron Microscopy - Energy Dispersive X-ray (SEM−EDX). The result indicated that CuAl LDH was successfully incorporated with the biochar that evidenced by the broadening of XRD peak at 2θ = 24° and the appearance of a new peak at 1095 cm−1 on the FTIR spectra. The BET surface area analysis revealed that CuAl/BC composite exhibited a larger surface area (200.9 m2/g) that the original CuAl LDH (46.2 m2/g). Surface morphological changes also confirmed by SEM image, which showed more aggregated particles. The result of the adsorption study indicated the composite material was efficient in removing malachite green with Langmuir maximum adsorption capacity of CuAl/BC reaching 470.96 mg/g, which is higher than the original CuAl LDH 59.523 mg/g. The thermodynamic analysis suggested that the adsorption of malachite green occurs spontaneously (ΔG < 0 at all tested temperature) and endothermic nature. Moreover, the CuAl/BC composite showed strong potential as a low-cost adsorbent for cationic dye removal since it showed not only a high adsorption capacity but also good reusability. Copyright © 2020 BCREC Group. All rights reserved


2020 ◽  
Vol 1 (1) ◽  
pp. 37-44
Author(s):  
Krishna Bahadur Dawadi ◽  
Mahesh Bhattarai ◽  
Puspa Lal Homagai

Adsorptive removal of methyl red (MR) from aqueous solution onto chemically modified Charred Sal (Shorea robusta) Saw-Dust (CSSD) and Xanthated Sal Saw-Dust (XSSD) has been investigated. The surface modification is characterized by Fourier transformed infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and elemental Analysis. Different parameters are studied such as contact time, optimum pH, and initial ion concentration. Maximum dye removal is observed at pH 4 for charred and xanthated Sal saw dust. The dye can be quantitatively removed onto the surface of these adsorbent. At a contact time of 3-4 hours maximum adsorption capacity (qmax) for CSSD and XSSD are found to be 70 mg/g and 130 mg/g respectively. Adsorption kinetic data are best fitted onto pseudo second order. The obtained result indicated an excellent alternative for the treatment of dye contaminated waste water using such chemically modified Sal saw dust at low cost with better efficiency.


2014 ◽  
Vol 30 (4) ◽  
pp. 376-392 ◽  
Author(s):  
Sana Nausheen ◽  
Haq Nawaz Bhatti ◽  
Zobia Furrukh ◽  
Sana Sadaf ◽  
Saima Noreen

Sign in / Sign up

Export Citation Format

Share Document