Adsorptive Removal of Ni2+from Aqueous Solution by Low Cost Cellulosic Adsorbent-Adsorption Kinetics and Isotherm Study

2013 ◽  
Vol 50 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Sultan Alam ◽  
Noor-ul-Amin ◽  
Najeeb-ur-Rehman ◽  
Azmat Ullah
Author(s):  
A. S. SALUNKE ◽  
N. N. GUND ◽  
B. M. MARMAT ◽  
J. P. SONAR ◽  
S. A. DOKHE ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 37-44
Author(s):  
Krishna Bahadur Dawadi ◽  
Mahesh Bhattarai ◽  
Puspa Lal Homagai

Adsorptive removal of methyl red (MR) from aqueous solution onto chemically modified Charred Sal (Shorea robusta) Saw-Dust (CSSD) and Xanthated Sal Saw-Dust (XSSD) has been investigated. The surface modification is characterized by Fourier transformed infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and elemental Analysis. Different parameters are studied such as contact time, optimum pH, and initial ion concentration. Maximum dye removal is observed at pH 4 for charred and xanthated Sal saw dust. The dye can be quantitatively removed onto the surface of these adsorbent. At a contact time of 3-4 hours maximum adsorption capacity (qmax) for CSSD and XSSD are found to be 70 mg/g and 130 mg/g respectively. Adsorption kinetic data are best fitted onto pseudo second order. The obtained result indicated an excellent alternative for the treatment of dye contaminated waste water using such chemically modified Sal saw dust at low cost with better efficiency.


2014 ◽  
Vol 30 (4) ◽  
pp. 376-392 ◽  
Author(s):  
Sana Nausheen ◽  
Haq Nawaz Bhatti ◽  
Zobia Furrukh ◽  
Sana Sadaf ◽  
Saima Noreen

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Nur Izzah Iwanina Zamri ◽  
Siti Lailatul N. Zulmajdi ◽  
Nur Zafirah A. Daud ◽  
Abdul Hanif Mahadi ◽  
Eny Kusrini ◽  
...  

Abstract In the present study, pectin-alginate-titania (PAT) composites were synthesized and the adsorptive removal behavior of methylene blue (MB) from aqueous solution, as a model of synthetic organic effluents, onto the prepared PAT composites were investigated by monitoring the effect of contact time, initial MB concentration, and temperature. The adsorption isotherm data were fitted well with the Freundlich isotherm model, suggesting the surface heterogeneity of the PAT composites and that the MB adsorption occurred on the active sites on multilayer surface of the composites. The adsorption kinetics of MB was demonstrated to be pseudo-second order, governed by two intraparticle diffusion rates, and the adsorption process was exothermic, spontaneous, and more disorder. The Langmuir isotherm model suggested that the maximum adsorption capacity of MB on the PAT composites was in the range of 435–637 mg g–1. In general, it increased with the TiO2 NPs content in the PAT composites, due most likely to the increase in surface area exposing more functional groups of the pectin and alginate to interact with the synthetic dye. The adsorptive removal of MB by the PAT composites was found to be more efficient compared with many other reported adsorbents, such as graphene oxide hybrids, pectin microspheres, magnetite-silica-pectin composites, clay-based materials, chemically treated minerals, and agricultural waste. The present study therefore demonstrated for the first time that PAT composites are not only promising to be utilized as an adsorbent in wastewater treatment, but also provide an insight into the adsorption mechanism of the synthetic dyes onto the biopolymers-titania composites. Graphic abstract Insight into the adsorption kinetics, mechanism, and thermodynamics of methylene blue from aqueous solution onto pectin-alginate-titania composite microparticles.


Sign in / Sign up

Export Citation Format

Share Document