scholarly journals Modifikasi Beton Fc 9,8 Mpa Menggunakan Abu Ampas Kopi

2020 ◽  
Vol 3 (2) ◽  
pp. 234
Author(s):  
Shirfi Wimaya ◽  
Ahmad Ridwan ◽  
Sigit Winarto

Concrete is a construction material that is widely used in building structures. Cement is the main constituent of concrete whose needs are increasing. The expansion of coffee shops in Kediri City resulted in an increase in the volume of coffee grounds waste, which can be used as an alternative to cement. The purpose of this study was to determine the value of the slump test, compressive strength test, and test the absorption capacity of the addition of coffee grounds ash to the concrete sample specimen using a cylinder is measuring 15cm x 30cm with 5 pieces of concrete quality K-125 or equivalent to fc '9.8 Mpa. Slump test results with a percentage of 4%, 8%, 12%, namely 2.5 cm, 0.5 cm and 2.5 cm. The results of the concrete compressive strength test with a percentage of 4% obtained the results of the compressive strength fc '10.51 Mpa or equivalent to K125, a percentage of 8% produces a compressive strength of fc' 8.39 and a percentage of 12% produces a compressive strength fc '7.56 Mpa equivalent to K100. The water absorption test results for 28 days resulted in an average value of 0.32 kg, 0.25 kg, 0.15 kg, and 33 kg.Beton merupakan salah satu bahan konstruksi yang banyak digunakan pada struktur bangunan. Semen merupakan penyusun utama beton yang kebutuhannya semakin meningkat. Perluasan kedai kopi di Kota Kediri mengakibatkan peningkatan volume limbah ampas kopi yang dapat digunakan sebagai alternatif pengganti semen. Tujuan penelitian ini adalah untuk mengetahui nilai uji slump, uji kuat tekan, dan uji daya serap penambahan abu ampas kopi pada benda uji beton dengan menggunakan silinder berukuran 15cm x 30cm dengan kualitas beton sebanyak 5 buah. K-125 atau setara dengan fc '9.8 Mpa. Hasil uji slump dengan persentase 4%, 8%, 12% yaitu 2.5 cm, 0.5 cm dan 2.5 cm. Hasil uji kuat tekan beton dengan persentase 4% didapatkan hasil kuat tekan fc '10 .51 Mpa atau setara dengan K125 persentase 8% menghasilkan kuat tekan fc '8,39 dan persentase 12% menghasilkan kekuatan tekan fc '7,56 Mpa setara dengan K100. Hasil pengujian daya serap air selama 28 hari menghasilkan nilai rata-rata 0,32 kg, 0,25 kg, 0,15 kg, dan 33 kg.

Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


2020 ◽  
Vol 4 (1) ◽  
pp. 47-56
Author(s):  
Saiful Muslimin ◽  
Suwarno Suwarno ◽  
April Gunarto ◽  
M Zaenuri

Concrete is a significant and most dominant material used in building structures. Concrete consists of a mixture of cement, aggregate, water, and added ingredients. Concrete said material has an essential role in making concrete because it can change the real properties to suit the needs. Li, asbestos is a concrete-added material that can reduce the use of cement and produce concrete with absolute consistency. The purpose of this study was to determine how the effect of adding asbestos waste to cement. The method used is an experimental method based on previous research. The specimen used was cylindrical with a diameter of 15 cm and a height of 30 cm. The percentage variation of asbestos waste addition is 0%, 50%, and 100% of the weight of cement used. Typical concrete test results obtained an average value of 22.08 MPa, a 50% percentage produces an average compressive strength of 21.32 MPa, and a portion of 100% provides a compressive strength of 22.93 MPa. Then the results of the then actual strength test have increased in the percentage of asbestos waste 100%.


2011 ◽  
Vol 2 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Borhan M.M. ◽  
Mohamed Sutan N.

This study investigates the effects of polymer additives namely polyvinyl acetate (PVAc) on water absorption and compressive strength of mortar. Twelve mortar mixtures were investigated for water absorption test and compressive strength test. Results showed that water absorption were inversely proportional to the percentage of PVAc addition. Final analysis showed that addition of PVAc had significant effects on water absorption. Samples with 1%, 3% and 5% addition of PVAc showed an increase of water absorption capacity in comparison to control mortar.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Author(s):  
Ismail Marzuki ◽  
Erniati Bachtiar ◽  
ASRI MULYA SETIAWAN ◽  
SRIGUSTY

the availability of sugarcane bagasse ash produced by Arasoe Sugar Factory, it is not used utilized. That sugarcane bagasse ash has size very fine that it can pollute the air. The sugarcane bagasse ash has silicate content, and it has pozzolan properties. The needs of construction material are something that to think about that. It is an alternative to substitute the using of cement in concrete construction. This study is aimed to find the potential of sugarcane bagasse ash in Arasoe Sugar Factory for partial substitution of cement in concrete. The sample made from the variety of sugarcane bagasse ash 0%, 2.5%, 5%, and 7.5% as partial substitution of cement in concrete. The ratio of water and cement is 0.45. The specimen of concrete is taken care in standard condition at the laboratory and compressive strength test when the sample is in 28, 45, and 62 days old. The compressive strength test refers to ASTM C39/ C39M-01 (Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens). The development of compressive strength of concrete with many variations of sugarcane bagasse ash 0% 2.5%, 5% is increasing along with the age of concrete, however in contrast with 7.5% of sugarcane bagasse ash the decreasing in 60 days old later. Partial substitute of sugarcane bagasse ash in concrete is possible to do in an amount about 5% of sugarcane bagasse ash


2019 ◽  
Vol 10 (2) ◽  
pp. 35-40
Author(s):  
Agung Rizki Pratomo ◽  
Fepy Supriani ◽  
Agustin Gunawan

This research was motivated by the contained SiO2 in zeolite. The purpose of this research was to know the zeolite effect as a substitute of cement in constructing 14 days paving block material which used conventional method toward the compressive strength of paving block. This research used SNI 03-06-1996 in constructing and testing the materials. The material was cube shaped with ±5 cm size which consists of normal paving block and 6 variations with 5 specimens of each variation. Total of specimen were 35. Substitute of zeolite variations used 2,5%, 5%, 7,5%, 10%, 12,5%, and 15% on the weight of cement. The result of compressive strength of normal paving block is 15,64 MPa. The result of compressive strength test had increased in the variation of 2,5% zeolite substitute by 6,28% normal paving block. The result of compressive strength test results showed the greatest decrease in variation of 15% zeolite replacement by 39,05% against normal paving block. 


2014 ◽  
Vol 1065-1069 ◽  
pp. 1871-1874
Author(s):  
Xiao Fei Wang ◽  
Yang Ping Wang ◽  
Li Cheng Wu

The same batch reactive powder concrete specimens were obtained with same raw materials and curing process, uniaxial compressive strength test had been done on the specimens after hot water curing placed in laboratory for seven days , three months and three years. The test results showed that seven-day strength and three-month strength of plain reactive powder concrete after hot water curing are almost equal. Strength of plain reactive powder concrete has not degradation within three months after hot water curing. While strength of plain reactive powder appears serious degradation phenomenon after placed in Laboratory for three years. Comparing uniaxial compressive strength test results of plain reactive powder concrete at three-month with three-year after hot water curing ,we find that strength of plain reactive concrete at three-year decrease about 27 percent than the strength of plain reactive powder concrete placed at laboratory for three months, and elasticity modulus increases about 71 percent, axial peak strain decrease about 62 percent respectively .With the passage of time, plain reactive powder concrete appears more Brittle Features and less toughness.


2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large


POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Agustinus Purna Irawan

This study aims to obtain the compressive strength of the material of a car spoiler product that was developed using materials from rattan fiber epoxy reinforced composites material. The car spoiler products are car accessories that also function as one of the equipment related to aerodynamics. The study was conducted by making test samples of rattan fiber epoxy reinforced composites and compared with the compressive strength of plastic spoiler materials obtained from the free market. The testing standard used is the compressive strength test of ASTM D 695. Based on the test results obtained compressive strength of spoiler made of plastic is 47.68 ± 1.37 MPa and rattan fiber epoxy reinforced composites material is 43.49 ± 4.21 MPa, with a compressive strength difference of 8.8%. The compressive strength of modeling results obtained a compressive strength of 47.97 MPa. This result is quite good and the difference is quite small, so the results of the study can be used as a reference for further product development.


Sign in / Sign up

Export Citation Format

Share Document