scholarly journals STRONG TEST PRESSURE CONCRETE USE OF ASBEST WASTE

2020 ◽  
Vol 4 (1) ◽  
pp. 47-56
Author(s):  
Saiful Muslimin ◽  
Suwarno Suwarno ◽  
April Gunarto ◽  
M Zaenuri

Concrete is a significant and most dominant material used in building structures. Concrete consists of a mixture of cement, aggregate, water, and added ingredients. Concrete said material has an essential role in making concrete because it can change the real properties to suit the needs. Li, asbestos is a concrete-added material that can reduce the use of cement and produce concrete with absolute consistency. The purpose of this study was to determine how the effect of adding asbestos waste to cement. The method used is an experimental method based on previous research. The specimen used was cylindrical with a diameter of 15 cm and a height of 30 cm. The percentage variation of asbestos waste addition is 0%, 50%, and 100% of the weight of cement used. Typical concrete test results obtained an average value of 22.08 MPa, a 50% percentage produces an average compressive strength of 21.32 MPa, and a portion of 100% provides a compressive strength of 22.93 MPa. Then the results of the then actual strength test have increased in the percentage of asbestos waste 100%.

2020 ◽  
Vol 3 (2) ◽  
pp. 234
Author(s):  
Shirfi Wimaya ◽  
Ahmad Ridwan ◽  
Sigit Winarto

Concrete is a construction material that is widely used in building structures. Cement is the main constituent of concrete whose needs are increasing. The expansion of coffee shops in Kediri City resulted in an increase in the volume of coffee grounds waste, which can be used as an alternative to cement. The purpose of this study was to determine the value of the slump test, compressive strength test, and test the absorption capacity of the addition of coffee grounds ash to the concrete sample specimen using a cylinder is measuring 15cm x 30cm with 5 pieces of concrete quality K-125 or equivalent to fc '9.8 Mpa. Slump test results with a percentage of 4%, 8%, 12%, namely 2.5 cm, 0.5 cm and 2.5 cm. The results of the concrete compressive strength test with a percentage of 4% obtained the results of the compressive strength fc '10.51 Mpa or equivalent to K125, a percentage of 8% produces a compressive strength of fc' 8.39 and a percentage of 12% produces a compressive strength fc '7.56 Mpa equivalent to K100. The water absorption test results for 28 days resulted in an average value of 0.32 kg, 0.25 kg, 0.15 kg, and 33 kg.Beton merupakan salah satu bahan konstruksi yang banyak digunakan pada struktur bangunan. Semen merupakan penyusun utama beton yang kebutuhannya semakin meningkat. Perluasan kedai kopi di Kota Kediri mengakibatkan peningkatan volume limbah ampas kopi yang dapat digunakan sebagai alternatif pengganti semen. Tujuan penelitian ini adalah untuk mengetahui nilai uji slump, uji kuat tekan, dan uji daya serap penambahan abu ampas kopi pada benda uji beton dengan menggunakan silinder berukuran 15cm x 30cm dengan kualitas beton sebanyak 5 buah. K-125 atau setara dengan fc '9.8 Mpa. Hasil uji slump dengan persentase 4%, 8%, 12% yaitu 2.5 cm, 0.5 cm dan 2.5 cm. Hasil uji kuat tekan beton dengan persentase 4% didapatkan hasil kuat tekan fc '10 .51 Mpa atau setara dengan K125 persentase 8% menghasilkan kuat tekan fc '8,39 dan persentase 12% menghasilkan kekuatan tekan fc '7,56 Mpa setara dengan K100. Hasil pengujian daya serap air selama 28 hari menghasilkan nilai rata-rata 0,32 kg, 0,25 kg, 0,15 kg, dan 33 kg.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


Author(s):  
Erny Agusri ◽  
Wahyu Pratama Jaya

Quickcure CX is a chemical for concrete designed using the latest technological innovations, this added material can accelerate and increase the compressive strength of concrete by 5 - 10% and can reduce the moisture content in the concrete mixture by 5 - 10%. The purpose of this study was to increase and accelerate the effect of the compressive strength value of concrete produced by Quickcure CX added material on K-500 concrete.The research sample is a cube-shaped test object with a size of 15cmx15cmx15cm. There are 4 sample variations, namely: Normal Concrete, Normal Concrete + Quickcure cx 0.25%, Normal Concrete + Quickcure cx 0.45%, and Normal Concrete + Quickcure cx 0.65%, each variation consisting of 15 samples.After conducting the concrete compressive strength test, this study obtained the highest average compressive strength test results in Normal Concrete (503.2kg / cm2), Normal Concrete + Quickcure cx 0.25% (513.8kg / cm2), Normal Concrete + Quickcure 0.45% (536.4kg / cm2) and Normal Concrete + Quickcure cx 0.65% at 551.6kg / cm2 at the age of 28 days. So of the 4 variations in the value of the compressive strength test of concrete, it still increases in Normal Concrete + Quickcure cx 0.65%, and accelerating the concrete does not accelerate because the average age is 21 days with a variation of Normal Concrete + Quickcure cx 0.65% with a value of 488.8 kg / cm2 so the concrete has not reached the compressive strength that was planned.Keywords: Concrete, Quikcure CX, Compressive Strength, K-500


Author(s):  
Babatunde Ogunbayo ◽  
Clinton Aigbavboa ◽  
Opeoluwa Akinradewo

Sandcrete block is a vital building material used in the construction of building structures. The sandcrete blocks are produced by different manufacturers using river sand obtained from different locations as aggregate material without recourse to the minimum quality standard for the blocks produced. The study assessed the strength parameters of river sand used as an aggregate material in block production to determine its quality and suitability in relation to the strength of block produced. Three (3) block manufacturing sites in Nigeria were visited and 27 (twenty-seven) blocks of size 450 mm x 225 mm x 225 mm were selected randomly from the sites. The properties of the river sand was analyzed through sieve analyses, bulk density, silt content and water absorption while the compressive strength of the blocks was also tested. The result of sieve analysis of the river sand used in block production for this study all satisfied the particle size requirements of BS EN 933-1:1997 for general construction work including block production. The result of the study also shows that blocks produced with the river sand after 28days have an average compressive strength of 1.23 N/mm2 (SW), 1.54 N/mm2 (SE) and 1.95N/mm2 (NE). The study, therefore, concluded and recommended that regulatory and professional bodies in partnership with relevant associations should organize seminars for producers of sandcrete blocks on the best practices involved in producing quality sandcrete blocks.


2014 ◽  
Vol 2 (1) ◽  
pp. 75-82
Author(s):  
Elivs M. Mbadike ◽  
N.N Osadebe

In this research work, the effect of mound soil on concrete produced with river sand was investigated. A mixed proportion of 1.1.8:3.7 with water cement ratio of 0.47 were used. The percentage replacement of river sand with mound soil is 0%, 5%, 10%, 20%, 30% and 40%. Concrete cubes of 150mm x 150mm x150mm of river sand/mound soil were cast and cured at 3, 7, 28, 60 and 90 days respectively. At the end of each hydration period, the three cubes for each hydration period were crushed and their average compressive strength recorded. A total of ninety (90) concrete cubes were cast. The result of the compressive strength test for 5- 40% replacement of river sand with mound soil ranges from 24.00 -42.58N/mm2 a against 23.29-36.08N/mm2 for the control test (0% replacement).The workability of concrete produced with 5- 40% replacement of river sand with mound soil ranges from 47- 62mm as against 70mm for the control test.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 10 (2) ◽  
pp. 35-40
Author(s):  
Agung Rizki Pratomo ◽  
Fepy Supriani ◽  
Agustin Gunawan

This research was motivated by the contained SiO2 in zeolite. The purpose of this research was to know the zeolite effect as a substitute of cement in constructing 14 days paving block material which used conventional method toward the compressive strength of paving block. This research used SNI 03-06-1996 in constructing and testing the materials. The material was cube shaped with ±5 cm size which consists of normal paving block and 6 variations with 5 specimens of each variation. Total of specimen were 35. Substitute of zeolite variations used 2,5%, 5%, 7,5%, 10%, 12,5%, and 15% on the weight of cement. The result of compressive strength of normal paving block is 15,64 MPa. The result of compressive strength test had increased in the variation of 2,5% zeolite substitute by 6,28% normal paving block. The result of compressive strength test results showed the greatest decrease in variation of 15% zeolite replacement by 39,05% against normal paving block. 


2019 ◽  
Vol 3 (1) ◽  
pp. 11-23
Author(s):  
Helwiyah Zain

Aggregate is a natural mineral grains that serve as filler in concrete mix, and the greatest material contained in the concrete. These material influence on the properties of concrete, so that the diameter size selection is essential in making the concrete. This study aims to determine the effect of variations of aggregate maximum diameter to the compressive strength of concrete. In this study used 15 specimens, were divided into 3 groups witch each of 5 specimens. Each group is distinguished aggregate maximum diameter: 31.5 mm, 16 mm, and 8 mm. Specimens used in this study is the specimen cylinder with a diameter of 15 cm and 30 cm high. Speciment tested done at age of concrete 28 days. The average compressive strength of concrete for each group of test based on variations of  the aggregate maximum diameter is: for the aggregate maximum diameter of 31.5 mm = 249.67 kg / cm2; the aggregate maximum diameter 16 mm = 274.91 kg / cm2; and the aggregate maximum diameter of 8 mm = 326.74 kg / cm2. Based on these test results, show that the average compressive strength of the concrete for the aggregate maximum diameter of 16 mm is 10.11% stronger than the concrete with the aggregate maximum diameter of 31.5 mm; and the strength of concrete aggregate maximum diameter of 8 mm, 30.87% stronger than the concrete with aggregate maximum diameter of 31.5 mm.


Sign in / Sign up

Export Citation Format

Share Document