scholarly journals Impact of Incorporating Metakaolin on the Mechanical Performance of High Grade Concrete

2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large

Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


Author(s):  
Erny Agusri ◽  
Wahyu Pratama Jaya

Quickcure CX is a chemical for concrete designed using the latest technological innovations, this added material can accelerate and increase the compressive strength of concrete by 5 - 10% and can reduce the moisture content in the concrete mixture by 5 - 10%. The purpose of this study was to increase and accelerate the effect of the compressive strength value of concrete produced by Quickcure CX added material on K-500 concrete.The research sample is a cube-shaped test object with a size of 15cmx15cmx15cm. There are 4 sample variations, namely: Normal Concrete, Normal Concrete + Quickcure cx 0.25%, Normal Concrete + Quickcure cx 0.45%, and Normal Concrete + Quickcure cx 0.65%, each variation consisting of 15 samples.After conducting the concrete compressive strength test, this study obtained the highest average compressive strength test results in Normal Concrete (503.2kg / cm2), Normal Concrete + Quickcure cx 0.25% (513.8kg / cm2), Normal Concrete + Quickcure 0.45% (536.4kg / cm2) and Normal Concrete + Quickcure cx 0.65% at 551.6kg / cm2 at the age of 28 days. So of the 4 variations in the value of the compressive strength test of concrete, it still increases in Normal Concrete + Quickcure cx 0.65%, and accelerating the concrete does not accelerate because the average age is 21 days with a variation of Normal Concrete + Quickcure cx 0.65% with a value of 488.8 kg / cm2 so the concrete has not reached the compressive strength that was planned.Keywords: Concrete, Quikcure CX, Compressive Strength, K-500


2021 ◽  
Vol 3 (1) ◽  
pp. 33-40
Author(s):  
Lantif Anggrahita Pratama ◽  
Ahmad Hakam Rifqi ◽  
Muhtarom Riyadi

Concrete is the most important part of a construction building. The purpose of this study was to examine how the comparison of physical and mechanical properties and optimum levels of the addition of straight tie wire as an added material with a water-cement ratio of 0.4. The percentage of addition of straight tie wire: 0%, 0.5%, 0.75%, 1.0%, of the total weight of the specimen with a tie-wire length of 8 cm. The test specimens for compressive strength, modulus of elasticity, and split tensile are in the form of a cylinder with a diameter of 15 cm and a height of 30 cm, and the specimen for flexural strength is a block with a length of 50 cm, a width of 10 cm and a height of 10 cm. The results show that the maximum compressive strength test on tie wire occurred at a percentage of 0.75% of 16.56 MPa. The maximum modulus of elasticity in tie wire occurred at a percentage of 0.75% of 15184.56 MPa. The maximum split tensile strength of tie wire occurred in a percentage of 0.75% of 1.165 MPa, and the maximum flexural strength of tie wire occurs at a percentage of 0.75% of 1.950 MPa. The research results concluded that the addition of a straight tie-wire to the concrete mixture could increase the compressive strength, split tensile strength, tensile strength, and elastic modulus of concrete.


Author(s):  
Shams Ul Khaliq ◽  
Irfan Jamil ◽  
Hanif Ullah

In this research attempt is made to examine Waste Marble Dust Mix (WMD) Concrete and Bentonite Mix Concrete. For physical and chemical properties of both concrete mixes, cylinders were examined in the laboratory for permeability testing, scanning electronic microscopy test, slump test, compressive strength test, and split tensile test. Cylinders were prepared in the ratio 1:2:4 with varying marble dust and bentonite content with 5% increment up to 20%. At 28 days with 10% replacement of marble dust and bentonite with cement, the permeability of WMD and Bentonite concrete were decreased by 21% and 34%. Increasing the percentage of WMD and bentonite from 10 to 20%, the MD concrete permeability was drastically increased. After crossing 10% limit it starts working as over burdening additives and allows water to flow through the cylinders, while with bentonite mix concrete by 20% replacement with cement, the permeability was further decreased up to 43%. The compressive and split strength test results of both mixes were totally different from each other. The compressive strength of WMD mix concrete decreased as the percentage of WMD was increased. At 28 days with 10% replacement, the compressive and split tensile strength were reduced by 8.9% and 2.1%. Whereas in bentonite mix, the concrete compressive and split strength were increased by 7.2% and 1.45 and were furthermore increased up to 20% replacement.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 10 (2) ◽  
pp. 35-40
Author(s):  
Agung Rizki Pratomo ◽  
Fepy Supriani ◽  
Agustin Gunawan

This research was motivated by the contained SiO2 in zeolite. The purpose of this research was to know the zeolite effect as a substitute of cement in constructing 14 days paving block material which used conventional method toward the compressive strength of paving block. This research used SNI 03-06-1996 in constructing and testing the materials. The material was cube shaped with ±5 cm size which consists of normal paving block and 6 variations with 5 specimens of each variation. Total of specimen were 35. Substitute of zeolite variations used 2,5%, 5%, 7,5%, 10%, 12,5%, and 15% on the weight of cement. The result of compressive strength of normal paving block is 15,64 MPa. The result of compressive strength test had increased in the variation of 2,5% zeolite substitute by 6,28% normal paving block. The result of compressive strength test results showed the greatest decrease in variation of 15% zeolite replacement by 39,05% against normal paving block. 


2010 ◽  
Vol 168-170 ◽  
pp. 1788-1791
Author(s):  
Wan Hu Zheng ◽  
Li Juan Li ◽  
Feng Liu

The deformation of rubberized concrete under uniaxial compression and three-point flexure is studied in this paper by test, and the load-deflection curves and load-strain curves under three-point flexure are obtained. Three rubberized concrete, with 5%, 10% and 15% rubber contents, were tested. The test results show that rubber powder influences the compressive strength and flexural strength of concrete. The greater of the rubber dosage, the greater of the strength decreasing of concrete. The decline of compressive strength is greater than flexural strength, the ratio of flexural strength to compressive strength of rubberized concrete is 1.08, 1.16, 1.26 times of the normal concrete for three different rubber contents respectively. And the ultimate tensile strain of rubberized concrete is 1.62, 2.25, 2.80 times of the normal concrete respectively. The addition of rubber improved the toughness and deformation ability of the normal concrete.


Sign in / Sign up

Export Citation Format

Share Document