scholarly journals SIMULASI DISTRIBUSI AIR BERSIH DENGAN ADOBE FLASH

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8
Author(s):  
Dwi Kartikasari ◽  
Nur Nafi'iyah

AbstractThe use of software in the design of clean water distribution is not new. Commonly software was used specifically was designed for clean water distribution networks, namely Epanet 2.0 and WaterCAD. So that in this research was tried using general software multimedia-based namely Adobe Flash. The stages of making simulation with the Adobe Flash program include: (1) Making a storyline, which is making a layout for planning map for clean water distribution networks. (2) Making images and symbol, including pictures of reservoir location, hamlet locations, village road, while symbol was used to determine the water flow direction from the water source to the reservoir and to each hamlet. (3) making water distribution simulation was described by arrows in the pipe, namely from the water source to the reservoir, also distributed to each village. (4) Finishing stage (finishing), which publishes work files Adobe Flash, namely .fla to file in the form of .swf and .exe. So that files can be run without installing Adobe Flash software. Key words: Simulation, Clean Water Distribution, Adobe Flash

2019 ◽  
Vol 9 (1) ◽  
pp. 73-80
Author(s):  
Anca Hoțupan ◽  
Roxana Mare ◽  
Adriana Hădărean

Abstract Water losses on the potable water distribution networks represent an important issue; on the one hand, water loss does not bring money and on the other hand, they modify water flow and pressure distribution on the entire system and this can lead to a cut-off of the water supply. A stringent monitoring of the water distribution network reduces considerably the water losses. The appearance of a leakage inside the distribution network is inevitable in time. But very important is its location and repair time – that are recommended to be as short as possible. The present paper analyses the hydraulic parameters of the water flow inside a supply pipe of a looped network that provides potable water for an entire neighbourhood. The main goals are to optimize these parameters, to reduce water losses by rigorous monitoring and control of the service pressure on the supply pipe and to create a balance between pressure and water flow. The presented method is valid for any type of distribution network, but the obtained values refer strictly to the analysed potable water distribution looped network.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3179
Author(s):  
Malvin S. Marlim ◽  
Doosun Kang

Contamination events in water distribution networks (WDNs) could have severe health and economic consequences. Contaminants can be deliberately or accidentally introduced into the WDN. Quick identification of the injection location and time is important in devising a mitigation plan to prevent further spread of the contaminant in the network. A method of identifying the possible intrusion point in a given network and reporting data is to use an inverse calculation by backtracking the potential path of the contaminant in the network. However, there is an element of uncertainty in the data used for calculation, particularly in water flow and sensor report time. Given the uncertainties, a method was developed in this study for fast and accurate contaminant source identification. This paper proposes a comparison filter of results by first identifying potential contaminant locations through backtracking, followed by a forward calculation to determine the injection time range, thereby reducing the potential suspects and providing likeliness comparison among the suspects. The effectiveness of the proposed method was examined by applying it to a benchmark WDN. By simulating uncertainties and filtering through the results, several possible contaminant intrusion locations and times were identified.


2020 ◽  
Vol 20 ◽  
pp. 61-72
Author(s):  
Lucas Edward ◽  
Mashaka James Mkandawile ◽  
Verdiana Grace Masanja

2020 ◽  
Vol 21 (2) ◽  
pp. 227-235
Author(s):  
Muhammad Rizki Apritama ◽  
I Wayan Koko Suryawan ◽  
Yosef Adicita

ABSTRACTThe clean water supply system network on Lengkang Kecil Island was developed in 2019. A small portion of the community's freshwater comes from harvesting rainwater and dug wells, which are only obtained during the rainy season. The primary source of clean water used by the community comes from underwater pipelines with a daily discharge of 0.86 l/sec. The water supply of the Lengkang Kecil Island community is 74.3 m3/day, with 146 House Connections (HCs) and to serve public facilities such as elementary schools, primary health centers, and mosques. Hydraulic evaluation of clean water distribution using EPANET 2.0 software on flow velocity shows the lowest rate of 0.29 m/s and the highest of 1.21 m/s. The lowest pressure value in the distribution system is 6.94-6.96 m and headloss units in the range 0.08-0.25 m/km. These three criteria are still within the distribution network design criteria (feasible). A carbon footprint can be calculated from each activity from the analysis of the evaluation of clean water distribution networks. The most massive emissions came from pumping activities with 131 kg CO2-eq, followed by emissions from wastewater 62.5 kgCO2-eq. Further research is needed to determine the quality of wastewater and the design for a centralized wastewater treatment plant (IPALT) to improve Lengkang Kecil Island residents' living standards.Keywords: Lengkang Kecil Island, water, EPANET, carbon footprintABSTRAKJaringan sistem penyediaan air bersih pada Pulau Lengkang Kecil dimulai pada tahun 2019. Sebagian kecil air bersih yang digunakan masyarakat berasal dari pemanenan air hujan dan sumur gali yang hanya didapat pada musim hujan. Sumber air bersih utama yang digunakan masyarakat berasal dari pengaliran perpipaan bawah laut dengan debit harian 0,86 l/detik. Kebutuhan air masyarakat Pulau Lengkang Kecil adalah 74,3 m3/hari dengan 146 Sambungan Rumah (SR) serta untuk melayani fasilitas umum seperti sekolah dasar (SD), puskesmas, dan masjid. Evaluasi hidrolis distribusi air bersih dengan menggunakan software EPANET 2.0 terhadap kriteria kecepatan aliran menunjukkan nilai terendah 0,29 m/s dan tertinggi 1,21 m/s. Nilai sisa tekan dalam sistem distribusi adalah 6,94–6,96 m dan unit headloss pada kisaran 0,08–0,25 m/km. Ketiga kriteria ini masih berada dalam kriteria desain jaringan distribusi (layak). Dari analisis evaluasi jaringan distribusi air bersih, dapat dihitung jejak karbon yang dihasilkan dari setiap kegiatannya. Emisi terbesar berasal dari kegiatan pemompaan dengan nilai 131 kgCO2-eq, diikuti dengan emisi yang berasal dari air limbah dengan nilai 62,5 kgCO2-eq. Penelitian lanjutan diperlukan untuk mengetahui kualitas dari air limbah dan desain untuk instalasi pengolahan air limbah terpusat (IPALT) untuk meningkatkan taraf hidup penduduk Pulau Lengkang Kecil.Kata kunci: Pulau Lengkang Kecil, air, EPANET, jejak karbon


Sign in / Sign up

Export Citation Format

Share Document