scholarly journals Double-Diffusive of Natural Convection in an Inclined Porous Square Domain Generalized Model

2019 ◽  
Vol 12 (3) ◽  
pp. 151-160
Author(s):  
Khaled Al-Farhany ◽  
A. Turan

Numerical investigate of double-diffusive natural convection in an inclined porous square. Two opposing walls of the square cavity are adiabatic; while the other walls are, kept at constant concentrations and temperatures. The Darcy–Forchheimer–Brinkman model is used to solve the governing equations with the Boussinesq approximation. A code written in FORTRAN language developed to solve the governing equations in dimensionless forms using a finite volume approach with a SIMPLER algorithm. The results presented in U-velocity and V-velocity, isotherms, iso-concentration, streamline, the average Nusselt number, and the average Sherwood number for different values of the dimensionless parameters. A wide range of these parameters have been used including; Darcy Number, modified Rayleigh number, Lewis number, buoyancy ratio, and inclination angle.  The results show that for opposite buoyancy ratio (N≤-1), the Nu decreases when the Le increases and the Sh increase when the Le increases. For an (N>0), the Nu increases when the Le increases until Le is equal to 1 and then it decreases, also Sh increases when the Le increases

2019 ◽  
pp. 271-271
Author(s):  
Redha Rebhi ◽  
Noureddine Hadidi ◽  
Rachid Bennacer

This paper presents a numerical study of a double diffusive convection in an inclined square porous cavity filled with an electrically conducting binary mixture. The upper and bottom walls are maintained at a constant temperatures and concentrations whereas the left and right walls are assumed to be adiabatic and impermeable. A uniform and tilted magnetic field is applied at an angle, ?, about the horizontal, it is obvious that this is related to the orientation of the magnetic force that can help or oppose the buoyant force. The Dupuit-Darcy flow model, which includes effects of the inertial parameter, with the Boussinesq approximation, energy and species transport equations are solved numerically using the classical finite difference method. Governing parameters of the problem under study are the thermal Rayleigh number, Rt, Hartmann number, Ha, Lewis number, Le, the buoyancy ratio, ?,inclination angle, ? and tilting angle of the magnetic field, ?,. The numerical results are reported on the contours of streamline, temperature, and concentration and for the average Nusselt and Sherwood numbers for various parametric conditions. It is demonstrated that both the inertial effect parameter and the magnetic field, have a strong influence on the strength of the natural convection heat and mass transfer within the porous layer.


Author(s):  
Nadezhda S. Bondareva ◽  
Mikhail A. Sheremet ◽  
Hakan F. Öztop ◽  
Nidal Abu-Hamdeh

Purpose The purpose of this paper is to study about the natural convection of water-based nanofluid in a partially open trapezoidal cavity under the influence of Brownian diffusion and thermophoresis. Design/methodology/approach Governing equations formulated in dimensionless stream function – vorticity variables – have been solved by finite difference method with a homemade code C++. Effects of Rayleigh number (Ra = 50-1,000), Lewis number (Le = 10-1,000), buoyancy-ratio parameter (Nr = 0.1-5.0), Brownian motion parameter (Nb = 0.1, 1.0) and thermophoresis parameter (Nt = 0.1, 1.0) on nanofluid flow and heat transfer have been studied. Findings It is found that high values of Rayleigh and Lewis numbers lead to the homogenization of nanoparticles distributions. For high values of Nt and Nb, heating is more essential and the cavity average temperature rises. Originality/value The originality of this work is to analyze natural convection in an open-sided trapezoidal cavity with Brownian diffusion and thermophoresis.


1999 ◽  
Vol 400 ◽  
pp. 333-353 ◽  
Author(s):  
I. SEZAI ◽  
A. A. MOHAMAD

A three-dimensional mathematical model based on the Brinkman extended Darcy equation has been used to study double-diffusive natural convection in a fluid-saturated porous cubic enclosure subject to opposing and horizontal gradients of temperature and concentration. The flow is driven by conditions of constant temperature and concentration imposed along the two vertical sidewalls of the cubic enclosure, while the remaining walls are impermeable and adiabatic. The numerical simulations presented here span a wide range of porous thermal Rayleigh number, buoyancy ratio and Lewis number to identify the different steady-state flow patterns and bifurcations. The effect of the governing parameters on the domain of existence of the three-dimensional flow patterns is studied for opposing flows (N < 0). Comprehensive Nusselt and Sherwood number data are presented as functions of the governing parameters. The present results indicate that the double-diffusive flow in enclosures with opposing buoyancy forces is strictly three-dimensional for a certain range of parameters. At high Lewis numbers multiple dipole vortices form in the transverse planes near the horizontal top and bottom surfaces, which the two-dimensional models fail to detect. The dipolar vortex structures obtained are similar to those created in laboratory experiments by the injection of fluid into a stratified medium.


Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


2013 ◽  
Vol 78 (2) ◽  
pp. 17-21
Author(s):  
Kazi AnowarHussain ◽  
Md. Arifur Rahman Mazumder ◽  
Rifat Jahan ◽  
Sharmin Akter

2019 ◽  
Vol 392 ◽  
pp. 123-137 ◽  
Author(s):  
Mohamed A. Medebber ◽  
Abderrahmane Aissa ◽  
Mohamed El Amine Slimani ◽  
Noureddine Retiel

The two dimensional study of natural convection in vertical cylindrical annular enclosure filled with Cu-water nanofluid under magnetic fields is numerically analyzed. The vertical walls are maintained at different uniform hot and cold temperatures, THand TC, respectively. The top and bottom walls of the enclosure are thermally insulated. The governing equations are solved numerically by using a finite volume method. The coupling between the continuity and momentum equations is effected using the SIMPLER algorithm. Numerical analysis has been carried out for a wide range of Rayleigh number (103≤Ra≤106), Hartmann number (1 ≤Ha≤100) and nanoparticles volume fraction (0 ≤φ≤0.08). The influence of theses physical parameters on the streamlines, isotherms and average Nusselt has been numerically investigated.


2014 ◽  
Vol 25 (11) ◽  
pp. 1450058 ◽  
Author(s):  
Fakher Oueslati ◽  
Brahim Ben-Beya ◽  
Taieb Lili

Unsteady three-dimensional (3D) double diffusive convection in tilted enclosure having a parallelepipedic shape has been analyzed numerically. The governing unsteady, 3D flow, energy and concentration transport equations, have been solved using an accelerated multigrid implicit volume method. Main attention was paid to the effects of the Rayleigh number Ra , buoyancy ratio N and the inclination angle γ of the cavity on the flow structure and heat and mass transfer rates. Typical distributions of velocity contours, temperature and concentration fields in wide range of defining parameters 103 ≤ Ra ≤ 2 × 104, -5 ≤ N ≤ 5 have been obtained. It is found, that the optimal heat and mass transfer rates for the aiding situation have been observed at two particular inclination angles namely 30° and 75° about the horizontal direction. It should be noted that the flow undergoes a periodic behavior for particular parameters Ra = 104 and γ = 75° according to the aiding flow case. The results also suggest that when N is in range -2 ≤ N ≤ -0.6, the flow continues to be three-dimensional keeping different heat and mass rates. Furthermore, it has been argued that the 2D assumption can be adopted for the 3D flows when the buoyancy ratio N is in range (-0.5–0).


2016 ◽  
Vol 26 (5) ◽  
pp. 1346-1364 ◽  
Author(s):  
Chahinez Ghernoug ◽  
Mahfoud Djezzar ◽  
Hassane Naji ◽  
Abdelkarim Bouras

Purpose – The purpose of this paper is to numerically study the double-diffusive natural convection within an eccentric horizontal cylindrical annulus filled with a Newtonian fluid. The annulus walls are maintained at uniform temperatures and concentrations so as to induce aiding thermal and mass buoyancy forces within the fluid. For that, this simulation span a moderate range of thermal Rayleigh number (100RaT100,000), Lewis (0.1Le10), buoyancy ratio (0N5) and Prandtl number (Pr=0.71) to examine their effects on flow motion and heat and mass transfers. Design/methodology/approach – A finite volume method in conjunction with the successive under-relaxation algorithm has been developed to solve the bipolar equations. These are written in dimensionless form in terms of vorticity, stream function, temperature and concentration. Beforehand, the implemented computer code has been validated through already published findings in the literature. The isotherms, streamlines and iso-concentrations are exhibited for various values of Rayleigh and Lewis numbers, and buoyancy ratio. In addition, heat and mass transfer rates in the annulus are translated in terms of Nusslet and Sherwood numbers along the enclosure’s sides. Findings – It is observed that, for the range of parameters considered here, the results show that the average Sherwood number increases with, while the average Nusselt number slightly dips as the Lewis number increases. It is also found that, under the convective mode, the local Nusselt number (or Sherwood) increases with the buoyancy ratio. Likewise, according to Lewis number’s value, the flow pattern is either symmetric and stable or asymmetric and random. Besides that, the heat transfer is transiting from a conductive mode to a convective mode with increasing the thermal Rayleigh number, and the flow structure and the rates of heat and mass transfer are significantly influenced by this parameter. Research limitations/implications – The range of the Rayleigh number considered here covers only the laminar case, with some constant parameters, namely the Prandtl number (Pr = 0.71), and the tilt angle (α=90°). The analysis here is only valid for steady, two-dimensional, laminar and aiding flow within an eccentric horizontal cylindrical annulus. This motivates further investigations involving other relevant parameters as N (opposite flows), Ra, Pr, Le, the eccentricity, the tilt angle, etc. Practical implications – An original framework for handling the double-diffusive natural convection within annuli is available, based on the bipolar equations. In addition, the achievement of this work could help researchers design thermal systems supported by annulus passages. Applications of the results can be of value in various arrangements such as storage of liquefied gases, electronic cable cooling systems, nuclear reactors, underground disposal of nuclear wastes, manifolds of solar energy collectors, etc. Originality/value – Given the geometry concerned, the bipolar coordinates have been used to set the inner and outer walls boundary conditions properly without interpolation. In addition, since studies on double-diffusive natural convection in annuli are lacking, the obtained results may be of interest to handle other configurations (e.g., elliptical-shaped speakers) with other boundary conditions.


This paper investigates the double diffusive natural convection in a partially porous layered enclosed cavity with a thermally conductive square body. The horizontal walls are thermally insulated, the left wall adds heat isothermally into the porous layer, while the right wall is cooled isothermally. The center of the square conductive body is positioned in the center of the cavity in such a way it lays on the porous-fluid interface. The governing equations have been solved using up-wind scheme finite difference method. The Parndtl number, thermal conductivity ratio of the body to fluid, Darcy number, aspect ratio of the square body to the cavity sides have fixed at 6.26, 1, 10-3, 0.5, respectively. The study has been governed by three parameters namely, Lewis number (Le = 1–50), buoyancy ratio (-10 – 10), and Rayleigh number (103 - 106 ). The results have showed that the mass diffusivity ratio, which takes into account non-unity tortuosity ratio (Deff/D = 0.53) has a significant effect on the mass transfer than the unity value. It is found also that Sherwood number is minimal when the buoyancy ratio equals to -0.5, otherwise, it increases with increasing the absolute value of the buoyancy ratio.


Sign in / Sign up

Export Citation Format

Share Document