scholarly journals Method for dealing with non-stationary natural and simulating interference in intellectual surveillance radars

Radiotekhnika ◽  
2021 ◽  
pp. 115-121
Author(s):  
V. Zhyrnov ◽  
S. Solonskaya ◽  
V. Zarytskyi

The article discusses a method for dealing with non-stationary natural and simulating interference in intelligent surveillance radars. When creating simulating marks, the introduction of amplitude modulation into the relayed radar sounding signal is used. As a result of the analysis, it was possible to find out that in the imitating noise, in this case, the so-called "intelligent" fluctuations of the burst structure of false marks appear, which differ from the fluctuations of the packs of real marks and can be easily detected by a human operator. The method is based on the definition of semantic components at the stage of formation and analysis of a symbolic model of amplitude fluctuations of a burst of signals from non-stationary natural and simulating interference and from real moving objects. In this case, the semantic features of amplitude fluctuations are determined by solving predicate equations for transforming these fluctuations into symbolic images of noise marks and real mobile aircraft. As a result of semantic analysis of the amplitude fluctuations of the burst in the time domain, classification distinctive features of fluctuations in the burst of signals from natural imitating noise and air objects were obtained. The semantic components of the decision-making algorithm are investigated, which are similar to the decision-making algorithms by a human operator. Process knowledge of transforming radar signals into symbolic images of amplitude fluctuations of a burst in the time domain is formalized. The formalization of the processing of symbolic images includes a system of predicate equations, by solving which the types of amplitude fluctuations of the burst are identified. Based on the results of experimental data, the transformations of real radar signals into symbolic images of burst fluctuations were carried out on the basis of the algebra of finite predicates. The authors also managed to propose these transformations to be used as the basis of an effective toolkit for obtaining classification distinctive features of packet fluctuations from interference and from aircraft.

Radiotekhnika ◽  
2020 ◽  
pp. 197-203
Author(s):  
V. Zhyrnov ◽  
S. Solonskaya

A method for semantic analysis of amplitude fluctuations of the radar pack to identify air objects in surveillance radars has been developed and implemented in software. This method is based on the determination of semantic components at the stage of formation and analysis of the symbolic model of a burst of impulse signals from mobile aircraft. Signal information is described by the predicate function of the process knowledge of the formation and analysis of the symbolic model of a burst of impulse signals from mobile aircraft such as an airplane, helicopter, UAV, and from atmospheric inhomogeneities of the angel-echo type. As a result of semantic analysis of the amplitude fluctuations, classification distinguishing attributes of fluctuations from interfering reflections and air objects are obtained. The semantic components of the decision-making algorithm, which are similar to decision-making algorithms by the operator, are investigated. In the developed algorithm, the signal information is described by a predicate function on the set of amplitudes of burst pulses exceeding a certain threshold value. Identification of the types of fluctuations is carried out by solving the developed equations of predicate operations. Based on these equations, a functional diagram of automatic determination of the fluctuation types is synthesized. The verification of the developed method was carried out on real data obtained on a survey centimeter-band radar (pulse duration 1 μs, sounding frequency 365 Hz, survey period 10 s). Based on these data, types of characteristic packs of radar signals are simulated. According to the results of the experiments, they were all correctly identified.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 678 ◽  
Author(s):  
Song-Kyoo (Amang) Kim

This paper deals with a standard stochastic game model with a continuum of states under the duel-type setup. It newly proposes a hybrid model of game theory and the fluctuation process, which could be applied for various practical decision making situations. The unique theoretical stochastic game model is targeted to analyze a two-person duel-type game in the time domain. The parameters for strategic decisions including the moments of crossings, prior crossings, and the optimal number of iterations to get the highest winning chance are obtained by the compact closed joint functional. This paper also demonstrates the usage of a new time based stochastic game model by analyzing a conventional duel game model in the distance domain and briefly explains how to build strategies for an atypical business case to show how this theoretical model works.


1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


2009 ◽  
Vol 6 (7) ◽  
pp. 577-580
Author(s):  
N. H. Adamyan ◽  
H. H. Adamyan ◽  
G. Yu. Kryuchkyan

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Wei Xiong ◽  
Qingbo He ◽  
Zhike Peng

Wayside acoustic defective bearing detector (ADBD) system is a potential technique in ensuring the safety of traveling vehicles. However, Doppler distortion and multiple moving sources aliasing in the acquired acoustic signals decrease the accuracy of defective bearing fault diagnosis. Currently, the method of constructing time-frequency (TF) masks for source separation was limited by an empirical threshold setting. To overcome this limitation, this study proposed a dynamic Doppler multisource separation model and constructed a time domain-separating matrix (TDSM) to realize multiple moving sources separation in the time domain. The TDSM was designed with two steps of (1) constructing separating curves and time domain remapping matrix (TDRM) and (2) remapping each element of separating curves to its corresponding time according to the TDRM. Both TDSM and TDRM were driven by geometrical and motion parameters, which would be estimated by Doppler feature matching pursuit (DFMP) algorithm. After gaining the source components from the observed signals, correlation operation was carried out to estimate source signals. Moreover, fault diagnosis could be carried out by envelope spectrum analysis. Compared with the method of constructing TF masks, the proposed strategy could avoid setting thresholds empirically. Finally, the effectiveness of the proposed technique was validated by simulation and experimental cases. Results indicated the potential of this method for improving the performance of the ADBD system.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3857
Author(s):  
Jakub Lorencki ◽  
Stanisław Radkowski ◽  
Szymon Gontarz

The article compares the results of experimental and modelling research of switched reluctance motor at two different operational states: one proper and one with mechanical fault, i.e., with dynamic eccentricity of the rotor. The experiments were carried out on a test bench and then the results were compared with mathematical modelling of quasi-static and dynamic analysis of 2D geometry model. Finally, it was examined how the operation with dynamic eccentricity fault of the motor affected its main physical parameter—the phase current. The analysis was presented in the frequency domain using the Fast Fourier Transform (FFT); however, individual current waveforms in the time domain are also shown for comparison. Applying results of the research could increase reliability of the maintenance of SRM and enhance its application in vehicles for special purposes as well as its military and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document