scholarly journals Survival of Beauveria bassiana a potential biocontrol agent for insect pests in kiwifruit orchard soils

2006 ◽  
Vol 59 ◽  
pp. 368-368 ◽  
Author(s):  
C.V. Mander ◽  
D.P. Logan ◽  
T.A. Jackson
2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2003 ◽  
Vol 56 ◽  
pp. 118-122
Author(s):  
R.J. Townsend ◽  
M. O'Callaghan ◽  
V.W. Johnson ◽  
T.A. Jackson

Microbial control agents targeting soildwelling organisms need to be compatible with commonly used fertilisers The bacterium Serratia entomophila is used as a microbial control agent for control of the New Zealand grass grub Costelytra zealandica and Beauveria bassiana is an entomopathogenic fungus used to control a range of insect pests These biocontrol agents were formulated into granules and applied to pots together with five fertilisers commonly used on pastures throughout New Zealand Compatibility with S entomophila was also assessed in a field trial where treatments were applied by direct drilling and surface application There appeared to be no deleterious effect from the application of the fertiliser treatments on the establishment and survival of either S entomophila or B bassiana On the contrary there was a suggestion that some nitrogenous fertilisers may lead to an increase in numbers of the bacterial biocontrol agent


2003 ◽  
Vol 56 ◽  
pp. 174-179
Author(s):  
M. Walter ◽  
F.J.L. Stavely ◽  
R.B. Chapman ◽  
J.K. Pell ◽  
T.R. Glare ◽  
...  

Zoophthora radicans an entomophthoralean fungus is a potential biocontrol agent for a wide range of insect pests The mortality of six insect species inoculated with twelve Z radicans isolates from different hosts found in New Zealand was evaluated using a bioassay Zoophthora radicans isolates originating from the host being tested were generally but not always more effective than isolates originating from other species For example lightbrown apple moth (LBAM) was highly susceptible to isolates Z2 and Z6 from leafrollers (96 and 89 mortality respectively) but was not susceptible to any isolates from diamondback moth (DBM) (mortality lt;5 Plt;0001) DBM was highly susceptible to all isolates from DBM (gt;96 mortality) but only moderately susceptible to leafroller isolates (lt;66 Plt;0001) Although resting spore production was low overall some isolates produced more resting spores in certain hosts such as Z2 and Z6 in LBAM (Plt;0001) and Z8 and Z5 in DBM (Plt;005)


2019 ◽  
Vol 9 (2) ◽  
pp. 16-19
Author(s):  
Zayoor Z. Omar ◽  
Tavga S. Rashid ◽  
Hayman K. Awla

Black bean aphid (Aphis fabae scop.), belongs to order Hemiptera and family Aphididae, is one of the important pests of the Fabaceae family. Beauveria bassiana is an important biocontrol agent to replace chemical insecticides. Therefore, in this research, two different varieties of broad bean with three different concentrations of B. bassiana were investigated on adults of fabae aphids under field conditions. After 3, 5, 7, and 14 days, the effect of the B. bassiana on the population of aphids was measured. The local variety was found to be more sensitive to the aphids compare with the Spain variety. In the high concentration (108 spores/ml), 80% mortality was obtained with B. bassiana in day 3 with local variety; then mortality increased after 5, 7, and 14 days of measuring the population of the adults. Mortality declined with the decrease in concentrations. The Spain variety was found to be resistance because fewer aphids were recorded compared to the local variety. In the highest concentration and day 14, mortality was 100%. The achieved results showed that B. bassiana can be used as a potential biocontrol agent for the management of black bean aphid in the fields.


2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2020 ◽  
Author(s):  
Enakshi Ghosh ◽  
Richa Varshney ◽  
Radhika Venkatesan

AbstractSuccessful pest management using parasitoids requires careful evaluation of host-parasitoid interactions. Here, we report the performance of larval ecto-parasitoid wasp, Bracon brevicornis (Wesmael) on important agricultural pests, Spodoptera litura (Fabricius) and S. frugiperda (J.E. Smith). Biology of B. brevicornis was studied on different host instars under laboratory and cage setup. In no-choice assay, the parasitoid development was highest on fifth instar S. litura larvae as the wasp laid ∼253 eggs with 62% hatching, 76% pupae formation and 78% adult emergence. Similarly, these parameters were highest on fifth instar S. frugiperda larvae (293 eggs, 57% hatching, 80% pupae formation, 70% adult emergence). In two-choice assay, B. brevicornis preferred fourth or fifth over third instar larvae of both hosts. Successful parasitism depends on host paralysis and suppression of host immunity. B. brevicornis interaction downregulated cellular immunity of both hosts as shown by reduced hemocyte viability and spreading. The percent parasitism rate of B. brevicornis was unaltered in the presence of host plant, Zea mays in cage study. 76 and 84% parasitism was observed on fifth instar larvae of S. litura and S. frugiperda, respectively. We evaluated the performance of B. brevicornis as a biocontrol agent on S. frugiperda in maize field. Our results show 54% average reduction in infestation after release of B. brevicornis. Taken together, we report the performance of B. brevicornis on important insect pests for the first time in laboratory and field conditions. Our findings indicate that B. brevicornis is a promising candidate for integrated pest management.Key messagesWe have evaluated the instar preference and performance of B. brevicornis as a potential biocontrol agent for two serious pests, Spodoptera litura and S. frugiperda.Fifth instar larva was most suitable for B. brevicornis development irrespective of the host species. B. brevicornis attack induced permanent paralysis and down-regulated cellular immunity of both hosts.Our field experiment confirmed B. brevicornis as a promising parasitoid for controlling S. frugiperda, a highly invasive pest of growing concern.


2014 ◽  
Vol 6 (2) ◽  
pp. 852-856 ◽  
Author(s):  
K. Selvaraj ◽  
H. D. Kaushik

The bioassay studies were carried out to determine the LC50 and LT50 of Beauveria bassiana against Aphis craccivora on fenugreek under greenhouse conditions. The results revealed that, the cumulative corrected mortality (CCM) was 43.50% at higher concentration (1×1010 spores/ml) and it was 20.85% at lowest concentration (1×104 spores/ml) at one day after treatment (DAT). The CCM decreased with decreasing conidial spore concentration. Likewise, at 2, 3, 4, 5, 6 and 7 DAT, almost same trend was observed. At 7 DAT, the CCM was 85.04% and 55.21% at 1×1010 spores/ml and 1×104 spores/ml, respectively. The LC50 value of B. bassiana against A. craccivora was 1.2×108 spores/ml. Mean lethal time (LT50) values were worked out 73, 89, 97, 112, 126, 138 and 157 hours for 1010, 109, 108, 107, 106, 105 and 104 spores/ml, respectively. By testing the field efficacy of B. bassiana against A. craccivora, this insect pathogenic fungus can be used as potential biocontrol agent for the sustainable management of aphid in fenugreek crop.


2010 ◽  
Vol 50 (1) ◽  
pp. 53-55 ◽  
Author(s):  
Poonam Dubey ◽  
Puja Ray ◽  
Akhilesh Pandey

First Record of EntomopathogenBeauveria Bassiana(Bals.-Criv.) Vuill. OnZygogramma BicolorataPallister, A Biocontrol Agent ofParthenium HysterophorusL.Entomopathogenic fungi have great potential as biological control agents against insect pests. So they are being developed worldwide for the control of many pests of agricultural importance. But their effect on non-target insects, such as natural enemies has been a matter of great concern. Recently we came across an entomopathogen infecting a laboratory culture ofZygogramma bicolorata, a potential biocontol agent of noxious weed,Parthenium hysterophorus. The pathogen was isolated from the grubs and beetles and identified asBeauveria bassiana. In the present paper, the entomopathogen,B. bassianais reported and described for the first time from the laboratory culture ofZ. bicolorata.


2009 ◽  
Vol 75 (11) ◽  
pp. 3787-3795 ◽  
Author(s):  
Yongjun Zhang ◽  
Jianhua Zhao ◽  
Weiguo Fang ◽  
Jianqing Zhang ◽  
Zhibing Luo ◽  
...  

ABSTRACT Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. However, its insecticide efficacy in the field is often influenced by adverse environmental factors. Thus, understanding the genetic regulatory processes involved in the response to environmental stress would facilitate engineering and production of a more efficient biocontrol agent. Here, a mitogen-activated protein kinase (MAPK)-encoding gene, Bbhog1, was isolated from B. bassiana and shown to encode a functional homolog of yeast HIGH-OSMOLARITY GLYCEROL 1 (HOG1). A Bbhog1 null mutation was generated in B. bassiana by targeted gene replacement, and the resulting mutants were more sensitive to hyperosmotic stress, high temperature, and oxidative stress than the wild-type controls. These results demonstrate the conserved function of HOG1 MAPKs in the regulation of abiotic stress responses. Interestingly, ΔBbhog1 mutants exhibited greatly reduced pathogenicity, most likely due to a decrease in spore viability, a reduced ability to attach to insect cuticle, and a reduction in appressorium formation. The transcript levels of two hydrophobin-encoding genes, hyd1 and hyd2, were dramatically decreased in a ΔBbhog1 mutant, suggesting that Bbhog1 may regulate the expression of the gene associated with hydrophobicity or adherence.


Sign in / Sign up

Export Citation Format

Share Document