scholarly journals Development and reproduction of Diadegma semiclausum (Hymenoptera Ichneumonidae) on diamondback moth Plutella xylostella (Lepidotera Plutellidae)

2008 ◽  
Vol 61 ◽  
pp. 322-327 ◽  
Author(s):  
D. Khatri ◽  
Q. Wang ◽  
X.Z. He

This study investigated the development emergence and mating of Diadegma semiclausum Hellen an important parasitoid of diamondback moth in the laboratory at 21 1C and 5060 RH with a photoperiod of 1212 h (lightdark) The parasitoids developmental period was significantly shorter and pupal weight significantly higher if their mothers parasitised the fourth instar larvae of DBM (P

2017 ◽  
Vol 43 (2) ◽  
pp. 195
Author(s):  
Robson Thomaz Thuler ◽  
Fernando Henrique Iost Filho ◽  
Hamilton César De Oliveira Charlo ◽  
Sergio Antônio De Bortoli

Plant induced resistance is a tool for integrated pest management, aimed at increasing plant defense against stress, which is compatible with other techniques. Rhizobacteria act in the plant through metabolic changes and may have direct effects on plant-feeding insects. The objective of this study was to determine the effects of cabbage plants inoculated with rhizobacteria on the biology and behavior of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Cabbage seeds inoculated with 12 rhizobacteria strains were sowed in polystyrene trays and later transplanted into the greenhouse. The cabbage plants with sufficient size to support stress were then infested with diamondback moth caterpillars. Later, healthy leaves suffering injuries were collected and taken to the laboratory to feed P. xylostella second instar caterpillars that were evaluated for larval and pupal viability and duration, pupal weight, and sex ratio. The reduction of leaf area was then calculated as a measure of the amount of larval feeding. Non-preference for feeding and oviposition assays were also performed, by comparing the control treatment and plants inoculated with different rhizobacterial strains. Plants inoculated with the strains EN4 of Kluyvera ascorbata and HPF14 of Bacillus thuringiensis negatively affected the biological characteristics of P. xylostella when such traits were evaluated together, without directly affecting the insect behavior.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 109
Author(s):  
Norazila Yusoff ◽  
Idris Abd Ghani ◽  
Nurul Wahida Othman ◽  
Wan Mohd Aizat ◽  
Maizom Hassan

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval–pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.


2019 ◽  
Vol 112 (5) ◽  
pp. 2094-2102 ◽  
Author(s):  
Ruth Kahuthia-Gathu ◽  
Stephen T O Othim

AbstractThe diamondback moth (DBM), Plutella xylostella L., is the most destructive pest affecting vegetable production in Kenya and around the world. Parasitoids have shown promising results in lowering the pest populations and damage caused by DBM. However, variations in host plant quality have been reported to have bottom-up effects up to the third and fourth trophic levels. We assessed the effects of two cultivated Brassica varieties (cabbage, Brassica oleracea var. capitata L. cultivar ‘Gloria F1’ and kale, B. oleracea var. acephala L. cultivar ‘Thousand headed’) on the development and performance of the specialist pest P. xylostella and two exotic parasitoids Diadegma semiclausum (Hellen) and Cotesia vestalis (Haliday). The exposed larval period of DBM took about 1.5 d longer on kale than cabbage and the total immature development time of both females and males was significantly longer on kale than cabbage. Higher pupal weight and higher fecundity were recorded on DBM fed on kale. Development time of D. semiclausum and C. vestalis was not affected by the host crop as was the parasitism rate of D. semiclausum. Heavier male pupae and larger adults of D. semiclausum, as well as more fecund adults of C. vestalis, were obtained from hosts fed on cabbage. Larger adults of C. vestalis were obtained from herbivores fed on kale. These results show potentially positive effects of host plant allelochemicals that are detrimental to herbivores while promoting parasitoid development and performance, which can be harnessed for the control of DBM.


2021 ◽  
Vol 108 (special) ◽  
Author(s):  
Susmitha S ◽  
◽  
Shanthi M ◽  
Murugan M ◽  
Senthil K ◽  
...  

Diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is one of the nefarious pests of cruciferous crops. Crude extracts from six botanicals obtained using hexane by continuous hot percolation process in Soxhlet apparatus were evaluated for their effect on larval mortality, antifeedant, growth and development of second instar larvae of DBM. The results revealed that the antifeedant index of Sesbania grandiflora 5% was 20.82% followed by Swietenia macrophylla 5%, which had 15.61%. The larval mortality and adult emergence exhibited by S. grandiflora was (66.67% and 33.33% respectively) after 72 h of feeding on treated leaf. It was statistically on par with S. macrophylla, which had 63.33% larval mortality and 36.67% adult emergence. With regard to the developmental period of life stages, no significant difference was observed among the treatments. However, all the treatments were significantly superior over untreated check in prolonging the developmental period of DBM. It was concluded that the S. grandiflora and S. macrophylla hexane leaf extract 5% are promising botanicals against P. xylostella, as they possess insecticidal, antifeedant and growth inhibitory activity. These results open up the scope for further isolation of bioactive compounds and validation under field conditions, which would lead to formulation development, ultimately it can be incorporated as ecofriendly component in the integrated pest management strategies.


2009 ◽  
Vol 62 ◽  
pp. 174-178
Author(s):  
D. Khatri ◽  
X.Z. He ◽  
Q. Wang

Diadegma semiclausum is an important larval parasitoid of diamondback moth Plutella xylostella Little was known about the reproductive biology of this parasitoid The present study investigated mating behaviour and egg maturation dynamics of D semiclausum in the laboratory at 211C 168 h (lightdark) and 5060 RH Both males and females became sexually mature


2014 ◽  
Vol 50 (No. 4) ◽  
pp. 184-189 ◽  
Author(s):  
Z. Magholi ◽  
H. Abbasipour ◽  
R. Marzban

Laboratory studies were performed to determine the insecticidal activity of baculovirus against diamondback moth, Plutella xylostella. The nucleopolyhedrosis (HaNPV) was tested against 2<sup>nd</sup> instar larvae fed on cabbage leaf disks treated with aqueous suspensions of occlusion bodies (OB). Lethal concentrations values (LC<sub>25</sub>, LC<sub>50</sub>, and LC<sub>75</sub>) were 2.2&nbsp;&times; 10<sup>3</sup>, 3.8 &times; 10<sup>4</sup>, and 6.6 &times; 10<sup>5</sup> PIB/ml for 2<sup>nd</sup> larval instars, respectively. Median lethal time (LT<sub>50</sub>) to similar response levels (mortality rates 50&ndash;75%) decreased with decreasing larval age (from 114.23 to 106.05 h). Larval development time and pupal weight were not affected by different concentrations (LC<sub>25</sub>, LC<sub>50</sub>, and LC<sub>75</sub>) of HaNPV. Significant differences were found in the pupal rate and adult emergence in larvae treated by different concentrations. In conclusion, HaNPV treatment failed to cause high mortality rates in P. xylostella larvae, but it had prompt deleterious effects on survivor&rsquo;s development and emergence. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document